Understanding PFAS Behavior: Analysing Contamination Patterns in Surface Water and Sediment of the Apies River, South Africa.

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
R Okwuosa, P N Nomngongo, L Petrik, O S Olatunji, O J Okonkwo
{"title":"Understanding PFAS Behavior: Analysing Contamination Patterns in Surface Water and Sediment of the Apies River, South Africa.","authors":"R Okwuosa, P N Nomngongo, L Petrik, O S Olatunji, O J Okonkwo","doi":"10.1007/s00128-025-04033-w","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants widely detected in water and sediment worldwide. Despite growing concerns about their ecological and health risks, their distribution in African aquatic environments remains understudied. This study addresses the knowledge gap in PFAS contamination by analysing the spatial and temporal distribution of 18 PFAS in Apies River water and sediment in Pretoria, South Africa. Surface water and sediment samples were collected upstream and downstream of the Apies River during dry seasons. The analysis of PFAS concentrations was conducted using liquid chromatography-tandem mass spectrometry. Statistical analysis, including paired t-tests, non-metric multidimensional scaling, and hierarchical cluster analysis, were applied to determine spatial and temporal trends. The study revealed significant spatial variations in PFAS contamination, with upstream locations consistently exhibiting higher concentrations than downstream. In surface water samples, L_PFBS, 4:2 FTS, 6:2 FTS, and L_PFHpS showed statistically significant differences (p < 0.05) between sites. Perfluorocarboxylic acids were the dominant PFAS class in surface water (50.47-57.15%), whereas perfluorosulfonic acids were more prevalent in sediments. Upstream sediment had higher L_PFHpS (43.00 ng/g), L_PFDS (38.89 ng/g), and L_PFHxS (23.91 ng/g) than downstream (31.96, 27.84, and 18.02 ng/g, respectively). The findings reveal contamination sources and partitioning between surface water and sediments, aiding in water quality management and pollution mitigation strategies.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 4","pages":"54"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-025-04033-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants widely detected in water and sediment worldwide. Despite growing concerns about their ecological and health risks, their distribution in African aquatic environments remains understudied. This study addresses the knowledge gap in PFAS contamination by analysing the spatial and temporal distribution of 18 PFAS in Apies River water and sediment in Pretoria, South Africa. Surface water and sediment samples were collected upstream and downstream of the Apies River during dry seasons. The analysis of PFAS concentrations was conducted using liquid chromatography-tandem mass spectrometry. Statistical analysis, including paired t-tests, non-metric multidimensional scaling, and hierarchical cluster analysis, were applied to determine spatial and temporal trends. The study revealed significant spatial variations in PFAS contamination, with upstream locations consistently exhibiting higher concentrations than downstream. In surface water samples, L_PFBS, 4:2 FTS, 6:2 FTS, and L_PFHpS showed statistically significant differences (p < 0.05) between sites. Perfluorocarboxylic acids were the dominant PFAS class in surface water (50.47-57.15%), whereas perfluorosulfonic acids were more prevalent in sediments. Upstream sediment had higher L_PFHpS (43.00 ng/g), L_PFDS (38.89 ng/g), and L_PFHxS (23.91 ng/g) than downstream (31.96, 27.84, and 18.02 ng/g, respectively). The findings reveal contamination sources and partitioning between surface water and sediments, aiding in water quality management and pollution mitigation strategies.

了解PFAS行为:分析南非Apies河地表水和沉积物中的污染模式。
全氟烷基和多氟烷基物质(PFAS)是世界范围内广泛存在于水和沉积物中的持久性环境污染物。尽管人们越来越关注它们的生态和健康风险,但它们在非洲水生环境中的分布仍未得到充分研究。本研究通过分析南非比勒陀利亚Apies河水和沉积物中18种PFAS的时空分布,解决了PFAS污染的知识缺口。在干旱季节,采集了阿比西河上游和下游的地表水和沉积物样本。采用液相色谱-串联质谱法分析PFAS浓度。统计分析,包括配对t检验、非度量多维尺度和分层聚类分析,用于确定时空趋势。该研究揭示了PFAS污染的显著空间差异,上游地区的浓度始终高于下游地区。在地表水样品中,L_PFBS、4:2 FTS、6:2 FTS和L_PFHpS差异有统计学意义(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信