César Soto-Figueroa, Tomas Galicia-Garcia, Armando Sebastián Pérez-Rodríguez, María Del Rosario Rodríguez-Hidalgo, Luis Vicente
{"title":"Mesoscopic study of smart dendritic-polymeric micelles for the removal of hormonal contraceptives from polluted aqueous environments.","authors":"César Soto-Figueroa, Tomas Galicia-Garcia, Armando Sebastián Pérez-Rodríguez, María Del Rosario Rodríguez-Hidalgo, Luis Vicente","doi":"10.1039/d5sm00272a","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of new smart dendritic-polymeric micelles (Boltorn-H40-P(NPAM)-P(NIPAM)) to extract hormonal contraceptives from polluted aqueous environments was investigated using dissipative particle dynamics (DPD) simulations and coarse-grained models. Mesoscopic results indicated that these dendritic-polymeric micelles exhibit stimulus sensitivity at two low critical solution temperatures (LCST's). Thermal scans revealed that the micelles generate distinct temperature-dependent miscibility intervals: below the LCST, a thermodynamically stable micellar system is formed, while above the LCST, the system loses miscibility through a cloud point, resulting in hydrophobic particles with a complex conformational structure, comprising a dendritic core and a polymeric shell that double encapsulates the hydrophobic core. The removal process of two hormonal contraceptives, drospirenone and 17α-ethinylestradiol, using Boltorn-H40-P(NPAM)-P(NIPAM) micelles involved two consecutive stages: (I) loading the contraceptive molecules into the dendritic core below the LCST, and (II) separating the contraceptive molecules <i>via</i> a cloud point above the LCST. Finally, all the stages involved in the removal of hormonal contraceptives from polluted aqueous environments were explored in detail.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00272a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ability of new smart dendritic-polymeric micelles (Boltorn-H40-P(NPAM)-P(NIPAM)) to extract hormonal contraceptives from polluted aqueous environments was investigated using dissipative particle dynamics (DPD) simulations and coarse-grained models. Mesoscopic results indicated that these dendritic-polymeric micelles exhibit stimulus sensitivity at two low critical solution temperatures (LCST's). Thermal scans revealed that the micelles generate distinct temperature-dependent miscibility intervals: below the LCST, a thermodynamically stable micellar system is formed, while above the LCST, the system loses miscibility through a cloud point, resulting in hydrophobic particles with a complex conformational structure, comprising a dendritic core and a polymeric shell that double encapsulates the hydrophobic core. The removal process of two hormonal contraceptives, drospirenone and 17α-ethinylestradiol, using Boltorn-H40-P(NPAM)-P(NIPAM) micelles involved two consecutive stages: (I) loading the contraceptive molecules into the dendritic core below the LCST, and (II) separating the contraceptive molecules via a cloud point above the LCST. Finally, all the stages involved in the removal of hormonal contraceptives from polluted aqueous environments were explored in detail.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.