Chen Qu, Paul L Houston, Thomas Allison, Joel M Bowman
{"title":"Targeted Transferable Machine-Learned Potential for Linear Alkanes Trained on C<sub>14</sub>H<sub>30</sub> and Tested for C<sub>4</sub>H<sub>10</sub> to C<sub>30</sub>H<sub>62</sub>.","authors":"Chen Qu, Paul L Houston, Thomas Allison, Joel M Bowman","doi":"10.1021/acs.jctc.4c01793","DOIUrl":null,"url":null,"abstract":"<p><p>Given the great importance of linear alkanes in fundamental and applied research, an accurate machine-learned potential (MLP) would be a major advance in computational modeling of these hydrocarbons. Recently, we reported a novel, many-body permutationally invariant model that was trained specifically for the 44-atom hydrocarbon C<sub>14</sub>H<sub>30</sub> on roughly 250,000 B3LYP energies (Qu, C.; Houston, P. L.; Allison, T.; Schneider, B. I.; Bowman, J. M. <i>J. Chem. Theory Comput.</i> <b>2024</b>, <i>20</i>, 9339-9353). Here, we demonstrate the accuracy of the transferability of this potential for linear alkanes ranging from butane C<sub>4</sub>H<sub>10</sub> up to C<sub>30</sub>H<sub>62</sub>. Unlike other approaches for transferability that aim for universal applicability, the present approach is targeted for linear alkanes. The mean absolute error (MAE) for energy ranges from 0.26 kcal/mol for butane and rises to 0.73 kcal/mol for C<sub>30</sub>H<sub>62</sub> over the energy range up to 80 kcal/mol for butane and 600 kcal/mol for C<sub>30</sub>H<sub>62</sub>. These values are unprecedented for transferable potentials and indicate the high performance of a targeted transferable potential. The conformational barriers are shown to be in excellent agreement with high-level ab initio calculations for pentane, the largest alkane for which such calculations have been reported. Vibrational power spectra of C<sub>30</sub>H<sub>62</sub> from molecular dynamics calculations are presented and briefly discussed. Finally, the evaluation time for the potential is shown to vary linearly with the number of atoms.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01793","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Given the great importance of linear alkanes in fundamental and applied research, an accurate machine-learned potential (MLP) would be a major advance in computational modeling of these hydrocarbons. Recently, we reported a novel, many-body permutationally invariant model that was trained specifically for the 44-atom hydrocarbon C14H30 on roughly 250,000 B3LYP energies (Qu, C.; Houston, P. L.; Allison, T.; Schneider, B. I.; Bowman, J. M. J. Chem. Theory Comput.2024, 20, 9339-9353). Here, we demonstrate the accuracy of the transferability of this potential for linear alkanes ranging from butane C4H10 up to C30H62. Unlike other approaches for transferability that aim for universal applicability, the present approach is targeted for linear alkanes. The mean absolute error (MAE) for energy ranges from 0.26 kcal/mol for butane and rises to 0.73 kcal/mol for C30H62 over the energy range up to 80 kcal/mol for butane and 600 kcal/mol for C30H62. These values are unprecedented for transferable potentials and indicate the high performance of a targeted transferable potential. The conformational barriers are shown to be in excellent agreement with high-level ab initio calculations for pentane, the largest alkane for which such calculations have been reported. Vibrational power spectra of C30H62 from molecular dynamics calculations are presented and briefly discussed. Finally, the evaluation time for the potential is shown to vary linearly with the number of atoms.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.