High Sugar Induced RCC2 Lactylation Drives Breast Cancer Tumorigenicity Through Upregulating MAD2L1.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bowen Zheng, Yunhao Pan, Fengyuan Qian, Diya Liu, Danrong Ye, Bolin Yu, Seng Zhong, Wenfang Zheng, Xuehui Wang, Baian Zhou, Yuying Wang, Lin Fang
{"title":"High Sugar Induced RCC2 Lactylation Drives Breast Cancer Tumorigenicity Through Upregulating MAD2L1.","authors":"Bowen Zheng, Yunhao Pan, Fengyuan Qian, Diya Liu, Danrong Ye, Bolin Yu, Seng Zhong, Wenfang Zheng, Xuehui Wang, Baian Zhou, Yuying Wang, Lin Fang","doi":"10.1002/advs.202415530","DOIUrl":null,"url":null,"abstract":"<p><p>Lactylation is a novel post-translational modification mediated by lactate, widely present in the lysine residues of both histone and non-histone proteins. However, the specific regulatory mechanisms and downstream target proteins remain unclear. Herein, it is demonstrated that the RCC2 protein may serve as a critical link between material metabolism and cell division, promoting the rapid proliferation of breast cancer under high glucose conditions. Mechanistically, the activation of glycolysis leads to an increase in lactate. Then, acyltransferase KAT2A mediates RCC2 lactylation at K124, which assists RCC2 in recruiting free SERBP1, thereby stabilizing MAD2L1 mRNA. The lactylation of RCC2 mediates the activation of the cellular MAD2L1 signaling pathway and contributes to the progression of breast cancer. A small molecule inhibitor slows down cell proliferation by binding to the RCC2 active pocket and specifically blocking RCC2 lactylation. The findings elucidate the mechanism behind the upregulation of MAD2L1 in murine tumors associated with a high-sugar diet as reported in prior study and suggest a novel therapeutic strategy of targeting RCC2 lactylation to restrict the rapid proliferation of breast cancer cell in a high-lactate microenvironment.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2415530"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202415530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lactylation is a novel post-translational modification mediated by lactate, widely present in the lysine residues of both histone and non-histone proteins. However, the specific regulatory mechanisms and downstream target proteins remain unclear. Herein, it is demonstrated that the RCC2 protein may serve as a critical link between material metabolism and cell division, promoting the rapid proliferation of breast cancer under high glucose conditions. Mechanistically, the activation of glycolysis leads to an increase in lactate. Then, acyltransferase KAT2A mediates RCC2 lactylation at K124, which assists RCC2 in recruiting free SERBP1, thereby stabilizing MAD2L1 mRNA. The lactylation of RCC2 mediates the activation of the cellular MAD2L1 signaling pathway and contributes to the progression of breast cancer. A small molecule inhibitor slows down cell proliferation by binding to the RCC2 active pocket and specifically blocking RCC2 lactylation. The findings elucidate the mechanism behind the upregulation of MAD2L1 in murine tumors associated with a high-sugar diet as reported in prior study and suggest a novel therapeutic strategy of targeting RCC2 lactylation to restrict the rapid proliferation of breast cancer cell in a high-lactate microenvironment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信