Explainable AI for Symptom-Based Detection of Monkeypox: a machine learning approach.

IF 3.4 3区 医学 Q2 INFECTIOUS DISEASES
Gizachew Mulu Setegn, Belayneh Endalamaw Dejene
{"title":"Explainable AI for Symptom-Based Detection of Monkeypox: a machine learning approach.","authors":"Gizachew Mulu Setegn, Belayneh Endalamaw Dejene","doi":"10.1186/s12879-025-10738-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Monkeypox, a viral zoonotic disease, is an emerging global health concern, with rising incidence and outbreaks extending beyond its endemic regions in Central and, West Africa and the world. The disease transmits through contact with infected animals and humans, leading to fever, rash, and lymphadenopathy symptoms. Control efforts include surveillance, contact tracing, and vaccination campaigns; however, the increasing number of cases underscores the necessity for a coordinated global response to mitigate its impact. Since monkeypox has become a public health issue, new methods for efficiently identifying cases are required. The control of monkeypox infections depends on early detection and prediction. This study aimed to utilize Symptom-Based Detection of Monkeypox using a machine-learning approach.</p><p><strong>Methods: </strong>This research presents a machine learning approach that integrates various Explainable Artificial Intelligence (XAI) to enhance the detection of monkeypox cases based on clinical symptoms, addressing the limitations of image-based diagnostic systems. In this study, we used a publicly available dataset from GitHub containing clinical features about monkeypox disease. The data have been analysed using Random Forest, Bagging, Gradient Boosting, CatBoost, XGBoost, and LGBMClassifier to develop a robust predictive model.</p><p><strong>Results: </strong>The study shows that machine learning models can accurately diagnose monkeypox based on symptoms like fever, rash, lymphadenopathy and other clinical symptoms. By using XAI techniques for feature importance, the approach not only achieved high accuracy but also provided transparency in decision-making. This integration of explainable Artificial intelligence (AI) enhances trust and allows healthcare professionals to understand predictions, leading to timely interventions and improved public health responses to monkeypox outbreaks. All Machine learning methods have been compared with the evaluation matrix. The best performance was for the LGBMClassifier, with an accuracy of 89.3%. In addition, multiple Explainable Techniques tools were used to help in examining and explaining the output of the LGBMClassifier model.</p><p><strong>Conclusions: </strong>Our research shows that combining explainable techniques with AI models greatly enhances the accuracy of case detection and boosts the trust of medical professionals. These models result in directly involving the reader and health care professional in the decision-making process, making informed decisions, and efficiently allocating resources by providing insight into the decision-making process. In addition, this study underscores the potential of AI in public health surveillance, particularly in enhancing responses to emerging infectious diseases such as monkeypox.</p>","PeriodicalId":8981,"journal":{"name":"BMC Infectious Diseases","volume":"25 1","pages":"419"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12879-025-10738-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Monkeypox, a viral zoonotic disease, is an emerging global health concern, with rising incidence and outbreaks extending beyond its endemic regions in Central and, West Africa and the world. The disease transmits through contact with infected animals and humans, leading to fever, rash, and lymphadenopathy symptoms. Control efforts include surveillance, contact tracing, and vaccination campaigns; however, the increasing number of cases underscores the necessity for a coordinated global response to mitigate its impact. Since monkeypox has become a public health issue, new methods for efficiently identifying cases are required. The control of monkeypox infections depends on early detection and prediction. This study aimed to utilize Symptom-Based Detection of Monkeypox using a machine-learning approach.

Methods: This research presents a machine learning approach that integrates various Explainable Artificial Intelligence (XAI) to enhance the detection of monkeypox cases based on clinical symptoms, addressing the limitations of image-based diagnostic systems. In this study, we used a publicly available dataset from GitHub containing clinical features about monkeypox disease. The data have been analysed using Random Forest, Bagging, Gradient Boosting, CatBoost, XGBoost, and LGBMClassifier to develop a robust predictive model.

Results: The study shows that machine learning models can accurately diagnose monkeypox based on symptoms like fever, rash, lymphadenopathy and other clinical symptoms. By using XAI techniques for feature importance, the approach not only achieved high accuracy but also provided transparency in decision-making. This integration of explainable Artificial intelligence (AI) enhances trust and allows healthcare professionals to understand predictions, leading to timely interventions and improved public health responses to monkeypox outbreaks. All Machine learning methods have been compared with the evaluation matrix. The best performance was for the LGBMClassifier, with an accuracy of 89.3%. In addition, multiple Explainable Techniques tools were used to help in examining and explaining the output of the LGBMClassifier model.

Conclusions: Our research shows that combining explainable techniques with AI models greatly enhances the accuracy of case detection and boosts the trust of medical professionals. These models result in directly involving the reader and health care professional in the decision-making process, making informed decisions, and efficiently allocating resources by providing insight into the decision-making process. In addition, this study underscores the potential of AI in public health surveillance, particularly in enhancing responses to emerging infectious diseases such as monkeypox.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Infectious Diseases
BMC Infectious Diseases 医学-传染病学
CiteScore
6.50
自引率
0.00%
发文量
860
审稿时长
3.3 months
期刊介绍: BMC Infectious Diseases is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of infectious and sexually transmitted diseases in humans, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信