{"title":"Advances in Nano-Immunomodulatory Systems for the Treatment of Acute Kidney Injury.","authors":"Chenli Zhang, Zeli Xiang, Pengfei Yang, Ling Zhang, Jun Deng, Xiaohui Liao","doi":"10.1002/advs.202409190","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) occurs when there is an imbalance in the immune microenvironment, leading to ongoing and excessive inflammation. Numerous immunomodulatory therapies have been suggested for the treatment of AKI, the current immunomodulatory treatment delivery systems are suboptimal and lack efficiency. Given the lack of effective treatment, AKI can result in multi-organ dysfunction and even death, imposing a significant healthcare burden on both the family and society. This underscores the necessity for innovative treatment delivery systems, such as nanomaterials, to better control pathological inflammation, and ultimately enhance AKI treatment outcomes. Despite the modification of numerous immunomodulatory nanomaterials to target the AKI immune microenvironment with promising therapeutic results, the literature concerning their intersection is scarce. In this article, the pathophysiological processes of AKI are outlined, focusing on the immune microenvironment, discuss significant advances in the comprehension of AKI recovery, and describe the multifunctionality and suitability of nanomaterial-based immunomodulatory treatments in managing AKI. The main obstacles and potential opportunities in the swiftly advancing research field are also clarified.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2409190"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409190","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) occurs when there is an imbalance in the immune microenvironment, leading to ongoing and excessive inflammation. Numerous immunomodulatory therapies have been suggested for the treatment of AKI, the current immunomodulatory treatment delivery systems are suboptimal and lack efficiency. Given the lack of effective treatment, AKI can result in multi-organ dysfunction and even death, imposing a significant healthcare burden on both the family and society. This underscores the necessity for innovative treatment delivery systems, such as nanomaterials, to better control pathological inflammation, and ultimately enhance AKI treatment outcomes. Despite the modification of numerous immunomodulatory nanomaterials to target the AKI immune microenvironment with promising therapeutic results, the literature concerning their intersection is scarce. In this article, the pathophysiological processes of AKI are outlined, focusing on the immune microenvironment, discuss significant advances in the comprehension of AKI recovery, and describe the multifunctionality and suitability of nanomaterial-based immunomodulatory treatments in managing AKI. The main obstacles and potential opportunities in the swiftly advancing research field are also clarified.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.