Nesil Eşiyok, Neringa Liutikaite, Christiane Haffner, Jula Peters, Sabrina Heide, Christina Eugster Oegema, Wieland B. Huttner, Michael Heide
{"title":"A dyad of human-specific NBPF14 and NOTCH2NLB orchestrates cortical progenitor abundance crucial for human neocortex expansion","authors":"Nesil Eşiyok, Neringa Liutikaite, Christiane Haffner, Jula Peters, Sabrina Heide, Christina Eugster Oegema, Wieland B. Huttner, Michael Heide","doi":"10.1126/sciadv.ads7543","DOIUrl":null,"url":null,"abstract":"<div >We determined the roles of two coevolved and coexpressed human-specific genes, <i>NBPF14</i> and <i>NOTCH2NLB</i>, on the abundance of the cortical progenitors that underlie the evolutionary expansion of the neocortex, the seat of higher cognitive abilities in humans. Using automated microinjection into apical progenitors (APs) of embryonic mouse neocortex and electroporation of APs in chimpanzee cerebral organoids, we show that <i>NBPF14</i> promotes the delamination of AP progeny, by promoting oblique cleavage plane orientation during AP division, leading to increased abundance of the key basal progenitor type, basal radial glia. In contrast, <i>NOTCH2NLB</i> promotes AP proliferation, leading to expansion of the AP pool. When expressed together, <i>NBPF14</i> and <i>NOTCH2NLB</i> exert coordinated effects, resulting in expansion of basal progenitors while maintaining self-renewal of APs. Hence, these two human-specific genes orchestrate the behavior of APs, and the lineages of their progeny, in a manner essential for the evolutionary expansion of the human neocortex.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads7543","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads7543","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We determined the roles of two coevolved and coexpressed human-specific genes, NBPF14 and NOTCH2NLB, on the abundance of the cortical progenitors that underlie the evolutionary expansion of the neocortex, the seat of higher cognitive abilities in humans. Using automated microinjection into apical progenitors (APs) of embryonic mouse neocortex and electroporation of APs in chimpanzee cerebral organoids, we show that NBPF14 promotes the delamination of AP progeny, by promoting oblique cleavage plane orientation during AP division, leading to increased abundance of the key basal progenitor type, basal radial glia. In contrast, NOTCH2NLB promotes AP proliferation, leading to expansion of the AP pool. When expressed together, NBPF14 and NOTCH2NLB exert coordinated effects, resulting in expansion of basal progenitors while maintaining self-renewal of APs. Hence, these two human-specific genes orchestrate the behavior of APs, and the lineages of their progeny, in a manner essential for the evolutionary expansion of the human neocortex.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.