A millisecond integrated quantum memory for photonic qubits

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yu-Ping Liu, Zhong-Wen Ou, Tian-Xiang Zhu, Ming-Xu Su, Chao Liu, Yong-Jian Han, Zong-Quan Zhou, Chuan-Feng Li, Guang-Can Guo
{"title":"A millisecond integrated quantum memory for photonic qubits","authors":"Yu-Ping Liu,&nbsp;Zhong-Wen Ou,&nbsp;Tian-Xiang Zhu,&nbsp;Ming-Xu Su,&nbsp;Chao Liu,&nbsp;Yong-Jian Han,&nbsp;Zong-Quan Zhou,&nbsp;Chuan-Feng Li,&nbsp;Guang-Can Guo","doi":"10.1126/sciadv.adu5264","DOIUrl":null,"url":null,"abstract":"<div >Quantum memories for light are essential building blocks for quantum repeaters and quantum networks. Integrated operations of quantum memories could enable scalable application with low-power consumption. However, the photonic quantum storage lifetime in integrated devices has so far been limited to tens of microseconds, falling short of the requirements for practical applications. Here, we demonstrate quantum storage of photonic qubits for 1.021 milliseconds based on a laser-written optical waveguide fabricated in a <sup>151</sup>Eu<sup>3+</sup>:Y<sub>2</sub>SiO<sub>5</sub> crystal. Spin dephasing of <sup>151</sup>Eu<sup>3+</sup> is mitigated through dynamical decoupling applied via on-chip electric waveguides, and we obtain a storage efficiency of 12.0 ± 0.5% at 1.021 milliseconds, which is a demonstration of integrated quantum memories that outperforms the efficiency of a simple fiber delay line. Such long-lived waveguide-based quantum memory could support applications in quantum repeaters, and further combination with critical magnetic fields could enable potential application as transportable quantum memories.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu5264","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu5264","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum memories for light are essential building blocks for quantum repeaters and quantum networks. Integrated operations of quantum memories could enable scalable application with low-power consumption. However, the photonic quantum storage lifetime in integrated devices has so far been limited to tens of microseconds, falling short of the requirements for practical applications. Here, we demonstrate quantum storage of photonic qubits for 1.021 milliseconds based on a laser-written optical waveguide fabricated in a 151Eu3+:Y2SiO5 crystal. Spin dephasing of 151Eu3+ is mitigated through dynamical decoupling applied via on-chip electric waveguides, and we obtain a storage efficiency of 12.0 ± 0.5% at 1.021 milliseconds, which is a demonstration of integrated quantum memories that outperforms the efficiency of a simple fiber delay line. Such long-lived waveguide-based quantum memory could support applications in quantum repeaters, and further combination with critical magnetic fields could enable potential application as transportable quantum memories.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信