Nanoelectronics-enabled reservoir computing hardware for real-time robotic controls

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mingze Chen, Xiaoqiu An, Seung Jun Ki, Xirong Liu, Nihal Sekhon, Artyom Boyarov, Anushka Acharya, Justin Tawil, Maxwell Bederman, Xiaogan Liang
{"title":"Nanoelectronics-enabled reservoir computing hardware for real-time robotic controls","authors":"Mingze Chen,&nbsp;Xiaoqiu An,&nbsp;Seung Jun Ki,&nbsp;Xirong Liu,&nbsp;Nihal Sekhon,&nbsp;Artyom Boyarov,&nbsp;Anushka Acharya,&nbsp;Justin Tawil,&nbsp;Maxwell Bederman,&nbsp;Xiaogan Liang","doi":"10.1126/sciadv.adu2663","DOIUrl":null,"url":null,"abstract":"<div >Traditional robotic vehicle control algorithms, implemented on digital devices with firmware, result in high power consumption and system complexity. Advanced control systems based on different device physics are essential for the advancement of sophisticated robotic vehicles and miniature mobile robots. Here, we present a nanoelectronics-enabled analog control system mimicking conventional controllers’ dynamic responses for real-time robotic controls, substantially reducing training cost, power consumption, and footprint. This system uses a reservoir computing network with interconnected memristive channels made from layered semiconductors. The network’s nonlinear switching and short-term memory characteristics effectively map input sensory signals to high-dimensional data spaces, enabling the generation of motor control signals with a simply trained readout layer. This approach minimizes software and analog-to-digital conversions, enhancing energy and resource efficiency. We demonstrate this system with two control tasks: rover target tracking and drone lever balancing, achieving similar performance to traditional controllers with ~10-microwatt power consumption. This work paves the way for ultralow-power edge computing in miniature robotic systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu2663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu2663","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional robotic vehicle control algorithms, implemented on digital devices with firmware, result in high power consumption and system complexity. Advanced control systems based on different device physics are essential for the advancement of sophisticated robotic vehicles and miniature mobile robots. Here, we present a nanoelectronics-enabled analog control system mimicking conventional controllers’ dynamic responses for real-time robotic controls, substantially reducing training cost, power consumption, and footprint. This system uses a reservoir computing network with interconnected memristive channels made from layered semiconductors. The network’s nonlinear switching and short-term memory characteristics effectively map input sensory signals to high-dimensional data spaces, enabling the generation of motor control signals with a simply trained readout layer. This approach minimizes software and analog-to-digital conversions, enhancing energy and resource efficiency. We demonstrate this system with two control tasks: rover target tracking and drone lever balancing, achieving similar performance to traditional controllers with ~10-microwatt power consumption. This work paves the way for ultralow-power edge computing in miniature robotic systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信