Xiao-Ting Xie, Meng Guan, Kai Cheng, Yong Li, Bin Zhang, Yi-Tong Zhou, Lin-Fang Tan, Peng-Shuo Dong, Si Chen, Bo Liu, Yuan-Di Zhao, Jin-Xuan Fan
{"title":"Programmable engineered bacteria as sustained-releasing antibody factory in situ for enhancing tumor immune checkpoint therapy","authors":"Xiao-Ting Xie, Meng Guan, Kai Cheng, Yong Li, Bin Zhang, Yi-Tong Zhou, Lin-Fang Tan, Peng-Shuo Dong, Si Chen, Bo Liu, Yuan-Di Zhao, Jin-Xuan Fan","doi":"10.1126/sciadv.adt7298","DOIUrl":null,"url":null,"abstract":"<div >Tumor immune checkpoint therapy (ICT) aims to block immune escape signals between tumor and immune cells. However, low delivery efficiency of immune checkpoint inhibitors (ICIs), narrow single-target approach, and reduced responsiveness notably hinder clinical development of ICT. Here, we developed a nanoliposome-bacteria hybrid system that acts as an antibody (Ab) factory, enabling precise tumor targeting and macrophage activation in hypoxic environments. We reprogrammed attenuated <i>Escherichia coli</i> MG1655 to synthesize CD47 antibodies (aCD47) in response to hypoxic tumor microenvironments while surface conjugating with redox-responsive macrophage colony-stimulating factor-loaded liposomes. This system leverages bacterial tropism to enhance macrophage infiltration and polarization. The low oxygen levels trigger in situ aCD47 expression, blocking the “do not eat me” signal and boosting macrophage antitumor activity. In addition, macrophage antigen presentation activates CD8+CD3+ T cells, amplifying systemic antitumor immunity. Analysis of the gut microbiome shows reduced pathogenicity and improved intestinal tolerance with increased probiotics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 13","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt7298","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt7298","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor immune checkpoint therapy (ICT) aims to block immune escape signals between tumor and immune cells. However, low delivery efficiency of immune checkpoint inhibitors (ICIs), narrow single-target approach, and reduced responsiveness notably hinder clinical development of ICT. Here, we developed a nanoliposome-bacteria hybrid system that acts as an antibody (Ab) factory, enabling precise tumor targeting and macrophage activation in hypoxic environments. We reprogrammed attenuated Escherichia coli MG1655 to synthesize CD47 antibodies (aCD47) in response to hypoxic tumor microenvironments while surface conjugating with redox-responsive macrophage colony-stimulating factor-loaded liposomes. This system leverages bacterial tropism to enhance macrophage infiltration and polarization. The low oxygen levels trigger in situ aCD47 expression, blocking the “do not eat me” signal and boosting macrophage antitumor activity. In addition, macrophage antigen presentation activates CD8+CD3+ T cells, amplifying systemic antitumor immunity. Analysis of the gut microbiome shows reduced pathogenicity and improved intestinal tolerance with increased probiotics.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.