Qiushi Zhai, Jiuxun Yin, Yan Yang, James W. Atterholt, Jiaxuan Li, Allen Husker, Zhongwen Zhan
{"title":"Comprehensive Evaluation of DAS Amplitude and Its Implications for Earthquake Early Warning and Seismic Interferometry","authors":"Qiushi Zhai, Jiuxun Yin, Yan Yang, James W. Atterholt, Jiaxuan Li, Allen Husker, Zhongwen Zhan","doi":"10.1029/2024JB030288","DOIUrl":null,"url":null,"abstract":"<p>Distributed Acoustic Sensing (DAS) is an emerging technology that converts optical fibers into dense arrays of strainmeters, significantly enhancing our understanding of earthquake physics and Earth's structure. While most past DAS studies have focused primarily on seismic wave phase information, accurate measurements of true ground motion amplitudes are crucial for comprehensive future analyses. However, amplitudes in DAS recordings, especially for pre-existing telecommunication cables with uncertain fiber-ground coupling, have not been fully quantified. By calibrating three DAS arrays with co-located seismometers, we systematically evaluate DAS amplitudes. Our results indicate that the average DAS amplitude of earthquake signals closely matches that of co-located seismometer data across frequencies from 0.01 to 10 Hz. The noise floor of DAS is comparable to that of strong-motion stations but higher than that of broadband stations. The saturation amplitude of DAS is adjustable by modifying the pulse repetition rate and gauge length. We also demonstrate how our findings enhance the understanding of fiber-optic seismology and its implications for natural hazard mitigation and Earth structure imaging and monitoring. Specifically, our results suggest that with proper settings, DAS can detect <i>P</i>-waves from an M6+ earthquake occurring 10 km from the cable without saturation, indicating its viability for earthquake early warning. Through quantitative comparison and analysis, we also find that local ambient traffic noise levels strongly affect the quality of seismic interferometry measurement, which is a powerful tool for near-surface imaging and monitoring. Our methodology and findings are valuable for future DAS experiments that require precise seismic amplitude measurements.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030288","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed Acoustic Sensing (DAS) is an emerging technology that converts optical fibers into dense arrays of strainmeters, significantly enhancing our understanding of earthquake physics and Earth's structure. While most past DAS studies have focused primarily on seismic wave phase information, accurate measurements of true ground motion amplitudes are crucial for comprehensive future analyses. However, amplitudes in DAS recordings, especially for pre-existing telecommunication cables with uncertain fiber-ground coupling, have not been fully quantified. By calibrating three DAS arrays with co-located seismometers, we systematically evaluate DAS amplitudes. Our results indicate that the average DAS amplitude of earthquake signals closely matches that of co-located seismometer data across frequencies from 0.01 to 10 Hz. The noise floor of DAS is comparable to that of strong-motion stations but higher than that of broadband stations. The saturation amplitude of DAS is adjustable by modifying the pulse repetition rate and gauge length. We also demonstrate how our findings enhance the understanding of fiber-optic seismology and its implications for natural hazard mitigation and Earth structure imaging and monitoring. Specifically, our results suggest that with proper settings, DAS can detect P-waves from an M6+ earthquake occurring 10 km from the cable without saturation, indicating its viability for earthquake early warning. Through quantitative comparison and analysis, we also find that local ambient traffic noise levels strongly affect the quality of seismic interferometry measurement, which is a powerful tool for near-surface imaging and monitoring. Our methodology and findings are valuable for future DAS experiments that require precise seismic amplitude measurements.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.