Dimitra Panagiotopoulou, Natalia Romo Catalán, Max Wilcox, Nigel Halliday, Paolo Pantalone, James Lazenby, Miguel Cámara, Stephan Heeb
{"title":"The Quorum Sensing Regulated sRNA Lrs1 Is Involved in the Adaptation to Low Iron in Pseudomonas aeruginosa","authors":"Dimitra Panagiotopoulou, Natalia Romo Catalán, Max Wilcox, Nigel Halliday, Paolo Pantalone, James Lazenby, Miguel Cámara, Stephan Heeb","doi":"10.1111/1758-2229.70090","DOIUrl":null,"url":null,"abstract":"<p>Iron is an essential nutrient for microbial growth. The opportunistic pathogen <i>Pseudomonas aeruginosa</i> can survive under diverse conditions, including iron-depleted environments with the aid of small non-coding RNAs (sRNAs). <i>P. aeruginosa</i> also uses three quorum sensing (QS) systems: Las, Rhl and Pqs, to coordinate virulence and infection establishment at the population level. The aim of this study is to investigate the role of the sRNA Lrs1, the gene of which is positioned within the promoter of the Pqs biosynthetic operon <i>pqsABCDE.</i> Transcriptomics and phenotypic assays indicate that Lrs1 downregulates the production of the siderophore pyochelin but not pyoverdine, and that <i>lrs1</i> regulation itself is dependent on iron availability. Although Lrs1 has been implicated in a positive feedback loop with the transcriptional regulator LasR in the strain PA14, the present findings indicate that this is not the case in PAO1-L in the tested conditions. Transcription of Lrs1 is dependent on quorum sensing, predominantly on RhlR with an auxiliary effect by PqsE. Furthermore, the Pqs system and phenazine production are modulated by Lrs1 only under iron limitation. This study identifies Lrs1 as a new QS-dependent post-transcriptional regulator in low iron, highlighting its importance in environmental adaptation in <i>P. aeruginosa</i>.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70090","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Iron is an essential nutrient for microbial growth. The opportunistic pathogen Pseudomonas aeruginosa can survive under diverse conditions, including iron-depleted environments with the aid of small non-coding RNAs (sRNAs). P. aeruginosa also uses three quorum sensing (QS) systems: Las, Rhl and Pqs, to coordinate virulence and infection establishment at the population level. The aim of this study is to investigate the role of the sRNA Lrs1, the gene of which is positioned within the promoter of the Pqs biosynthetic operon pqsABCDE. Transcriptomics and phenotypic assays indicate that Lrs1 downregulates the production of the siderophore pyochelin but not pyoverdine, and that lrs1 regulation itself is dependent on iron availability. Although Lrs1 has been implicated in a positive feedback loop with the transcriptional regulator LasR in the strain PA14, the present findings indicate that this is not the case in PAO1-L in the tested conditions. Transcription of Lrs1 is dependent on quorum sensing, predominantly on RhlR with an auxiliary effect by PqsE. Furthermore, the Pqs system and phenazine production are modulated by Lrs1 only under iron limitation. This study identifies Lrs1 as a new QS-dependent post-transcriptional regulator in low iron, highlighting its importance in environmental adaptation in P. aeruginosa.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.