The Laminar-Turbulence Transition in Wall-Bounded Incompressible Magnetohydrodynamic Flows

IF 1.9 4区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Lei Wang, Xiujie Zhang, Xinting Lv, Zhenchao Sun
{"title":"The Laminar-Turbulence Transition in Wall-Bounded Incompressible Magnetohydrodynamic Flows","authors":"Lei Wang,&nbsp;Xiujie Zhang,&nbsp;Xinting Lv,&nbsp;Zhenchao Sun","doi":"10.1007/s10894-025-00493-4","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the laminar-turbulence transition mechanism in wall-bounded incompressible magnetohydrodynamic (MHD) flows is particularly important for liquid metal blankets of fusion reactors. However, this physical mechanism is still not thoroughly clear until now, especially there is a lack of quantitative analysis results to indicate where within the channel the transition process is likely to occur first. Moreover, the Hartmann layer thickness-based Reynolds number (<i>R</i>) has been found as a single parameter to control the transition process in MHD flows, but a mathematical explanation about this parameter is still absent. In this work, the turbulence transition phenomenon of the wall-bounded incompressible MHD flow is studied by a method called the energy gradient analysis. It points out that the ratio of the total mechanical energy density gradient in the transverse direction to that in the streamwise direction of the main flow (defined by a dimensionless parameter <i>K</i>) characterizes the development of the disturbance in the flow field. We have found that the distance between the initial turbulence transition position in the Hartmann layer and the Hartmann wall is always 69.31% of the thickness of the Hartmann layer, independent of the value of the Hartmann number (<i>Ha</i>). The effects of the Hartmann number and the wall conductance ratio on the initial turbulence transition position in the side layer are also investigated. At last, the reason why the Hartmann layer thickness-based Reynolds number (<i>R</i>) plays the role as a single control parameter in the transition process of MHD flows is explained mathematically.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fusion Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10894-025-00493-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the laminar-turbulence transition mechanism in wall-bounded incompressible magnetohydrodynamic (MHD) flows is particularly important for liquid metal blankets of fusion reactors. However, this physical mechanism is still not thoroughly clear until now, especially there is a lack of quantitative analysis results to indicate where within the channel the transition process is likely to occur first. Moreover, the Hartmann layer thickness-based Reynolds number (R) has been found as a single parameter to control the transition process in MHD flows, but a mathematical explanation about this parameter is still absent. In this work, the turbulence transition phenomenon of the wall-bounded incompressible MHD flow is studied by a method called the energy gradient analysis. It points out that the ratio of the total mechanical energy density gradient in the transverse direction to that in the streamwise direction of the main flow (defined by a dimensionless parameter K) characterizes the development of the disturbance in the flow field. We have found that the distance between the initial turbulence transition position in the Hartmann layer and the Hartmann wall is always 69.31% of the thickness of the Hartmann layer, independent of the value of the Hartmann number (Ha). The effects of the Hartmann number and the wall conductance ratio on the initial turbulence transition position in the side layer are also investigated. At last, the reason why the Hartmann layer thickness-based Reynolds number (R) plays the role as a single control parameter in the transition process of MHD flows is explained mathematically.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fusion Energy
Journal of Fusion Energy 工程技术-核科学技术
CiteScore
2.20
自引率
0.00%
发文量
24
审稿时长
2.3 months
期刊介绍: The Journal of Fusion Energy features original research contributions and review papers examining and the development and enhancing the knowledge base of thermonuclear fusion as a potential power source. It is designed to serve as a journal of record for the publication of original research results in fundamental and applied physics, applied science and technological development. The journal publishes qualified papers based on peer reviews. This journal also provides a forum for discussing broader policies and strategies that have played, and will continue to play, a crucial role in fusion programs. In keeping with this theme, readers will find articles covering an array of important matters concerning strategy and program direction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信