{"title":"Harnessing Exercise-Like Benefits of Protonation prone Liposomal Resveratrol in Differentiated Fat Cells: A Proof-of-Concept Study","authors":"Nupur Vasdev, Tanisha Gupta, Anoothi Bain, Dnyaneshwar Kalyane, Suryanarayana Polaka, Rakesh Kumar Tekade","doi":"10.1208/s12249-025-03085-9","DOIUrl":null,"url":null,"abstract":"<div><p>Obesity is a significant health issue resulting from a sedentary lifestyle and is linked to numerous other serious conditions, including cancer, diabetes, and cardiovascular diseases. Consequently, resveratrol (RES) is gaining attention as an emerging therapeutic agent due to its exercise-like effects. However, RES's instability and low aqueous solubility have limited its applications. This research report focuses on the loading, solubilization, and sustained delivery of RES using a dendrimer complex loaded liposomal formulation. The safety and efficacy of formulation was studied by performing various assays. The DEN-RES complex loaded liposomes were optimized using a Quality by Design (QbD) approach whereas particle size, PDI and zeta potential were found to be 159.29 ± 0.58 nm, 0.206 ± 0.008, and -7.2 ± 0.14 mV, which followed first-order release kinetics for sustained RES release. The mRNA levels of the SIRT1 and AMPK genes were found to be upregulated by more than two folds, whereas the LIPO-DEN-RES downregulated the mRNA expression of PPARγ in adipocytes. Therefore, the modulation of mRNA levels detected in 3T3-L1 cells post-treatment with the LIPO-DEN-RES validates the formulation's potential in addressing obesity.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03085-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a significant health issue resulting from a sedentary lifestyle and is linked to numerous other serious conditions, including cancer, diabetes, and cardiovascular diseases. Consequently, resveratrol (RES) is gaining attention as an emerging therapeutic agent due to its exercise-like effects. However, RES's instability and low aqueous solubility have limited its applications. This research report focuses on the loading, solubilization, and sustained delivery of RES using a dendrimer complex loaded liposomal formulation. The safety and efficacy of formulation was studied by performing various assays. The DEN-RES complex loaded liposomes were optimized using a Quality by Design (QbD) approach whereas particle size, PDI and zeta potential were found to be 159.29 ± 0.58 nm, 0.206 ± 0.008, and -7.2 ± 0.14 mV, which followed first-order release kinetics for sustained RES release. The mRNA levels of the SIRT1 and AMPK genes were found to be upregulated by more than two folds, whereas the LIPO-DEN-RES downregulated the mRNA expression of PPARγ in adipocytes. Therefore, the modulation of mRNA levels detected in 3T3-L1 cells post-treatment with the LIPO-DEN-RES validates the formulation's potential in addressing obesity.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.