{"title":"Combination of Osgood and Nagumo-Type Uniqueness for Nonlinear Differential Equations","authors":"Ke Jiang, Sulei Wang","doi":"10.1007/s00021-025-00935-1","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a convex combination of the Osgood and Nagumo conditions ensures the uniqueness of the solution to the boundary value problem for a second-order nonlinear differential equation on a semi-infinite interval. A typical example of such problem is a recently derived nonlinear model for the motion of arctic gyres.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00935-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We show that a convex combination of the Osgood and Nagumo conditions ensures the uniqueness of the solution to the boundary value problem for a second-order nonlinear differential equation on a semi-infinite interval. A typical example of such problem is a recently derived nonlinear model for the motion of arctic gyres.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.