{"title":"Scaling law of launch velocity in laser-induced microparticle impact testing","authors":"Yiping Song, Zhoupeng Gu, Minqiang Jiang, Qiuyun Yin, Chenguang Huang, Xianqian Wu","doi":"10.1007/s11433-024-2612-0","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-induced microparticle impact testing (LIPIT) is a useful method for measuring the dynamic mechanical behavior of materials under ultra-high strain rates by accelerating and launching a single microparticle at high velocity. It is important to establish a scaling law for the laser-induced microparticle launching system to optimize its configurations and improve the achievable velocity of the microparticle. In this study, the physical process of laser-induced microparticle launching is analyzed. A scaling law for the launch system is obtained by dimensional analysis. The influence of dominant dimensionless parameters on the dimensionless velocity of the microparticle is then assessed by numerical simulations. The results show that the dimensionless launch velocity of the microparticle increases with increasing dimensionless energy and dimensionless time of the laser pulse and with decreasing dimensionless thickness of metal and elastomer films and the dimensionless mass of the microparticle. Finally, the dimensionless formulas for predicting the velocity of the microparticle of the launch system with thick-metal-film and thin-metal-film configurations are determined, respectively. This study promotes the understanding of the launch mechanisms of LIPIT and provides a guideline for optimizing its configuration to achieve a wide range of impact velocities of the microparticles.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2612-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced microparticle impact testing (LIPIT) is a useful method for measuring the dynamic mechanical behavior of materials under ultra-high strain rates by accelerating and launching a single microparticle at high velocity. It is important to establish a scaling law for the laser-induced microparticle launching system to optimize its configurations and improve the achievable velocity of the microparticle. In this study, the physical process of laser-induced microparticle launching is analyzed. A scaling law for the launch system is obtained by dimensional analysis. The influence of dominant dimensionless parameters on the dimensionless velocity of the microparticle is then assessed by numerical simulations. The results show that the dimensionless launch velocity of the microparticle increases with increasing dimensionless energy and dimensionless time of the laser pulse and with decreasing dimensionless thickness of metal and elastomer films and the dimensionless mass of the microparticle. Finally, the dimensionless formulas for predicting the velocity of the microparticle of the launch system with thick-metal-film and thin-metal-film configurations are determined, respectively. This study promotes the understanding of the launch mechanisms of LIPIT and provides a guideline for optimizing its configuration to achieve a wide range of impact velocities of the microparticles.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.