In order to solve the vertical vibration negative effect problem caused by the increase of the unsprung mass in the hub motor driven vehicle (HMDV), a novel mechatronic suspension using the bridge electrical network is proposed. Firstly, the bridge electrical networks composed of two capacitors, two inductors, and one resistor are summarized and their impedance functions are analyzed forward through the structural method. Then a quarter HMDV model is constructed, and the optimal element parameters in the electrical networks are selected through the Pattern Search algorithm. The influence of element parameters perturbation of the optimal structure on the output response of HMDV suspension is further analyzed. Results show that the proposed bridge electrical network can be realized as a biquartic impedance. It can be equivalent to a mechanical impedance of the suspension through a linear motor. Compared with the conventional suspension, the root-mean-square values of the dynamic tire load and the suspension working space are reduced by 10.76% and 18.10%, respectively. The vibration at low and high frequencies of the unsprung mass is suppressed, effectively improving the grounding and handling stability of the vehicle.