Comparative genome analysis of 15 Streptococcus thermophilus strains isolated from Turkish traditional yogurt

IF 1.8 3区 生物学 Q4 MICROBIOLOGY
Deniz Kiraz, Ali Özcan
{"title":"Comparative genome analysis of 15 Streptococcus thermophilus strains isolated from Turkish traditional yogurt","authors":"Deniz Kiraz,&nbsp;Ali Özcan","doi":"10.1007/s10482-025-02070-3","DOIUrl":null,"url":null,"abstract":"<div><p><i>Streptococcus thermophilus</i> plays a pivotal role in yogurt fermentation, yet strains from traditional fermented products remain largely unexplored compared to their industrial counterparts. This study aimed to characterize the genomic diversity and functional potential of 15 <i>S. thermophilus</i> strains isolated from Turkish traditional yogurts, and to compare them with industrial strains. Through whole-genome sequencing and advanced bioinformatics analyses, we revealed distinct phylogenetic patterns and genetic features that differentiate these traditional strains from industrial isolates. The genomes (1.68–1.86 Mb) exhibited high genetic homogeneity (ANI &gt; 98.69%) while maintaining significant functional diversity. Pan-genome analysis identified 1160 core genes and 5694 accessory genes, highlighting substantial genomic plasticity that enables niche adaptation. Our analysis uncovered several distinctive features: (1) unique phylogenetic clustering patterns based on both housekeeping genes and whole-genome SNPs, suggesting geographical isolation effects; (2) an extensive repertoire of carbohydrate-active enzymes (CAZymes), comprising 111 Glycoside Hydrolases, 227 Glycosyl Transferases, and 44 Carbohydrate Esterases and 13 Carbohydrate-Binding Modules, demonstrating sophisticated carbohydrate metabolism adaptation significantly enriched compared to industrial strains; (3) widespread GABA biosynthesis pathways in 8 strains, including complete gadB gene, indicating potential health-promoting properties; (4) multiple genomic islands containing genes for galactose utilization and stress response, suggesting specific adaptation to traditional fermentation environments; (5) diverse exopolysaccharide biosynthesis and bacteriocin gene clusters; and (6) widespread CRISPR-Cas systems with variable spacer content. Notably, we identified vanY glycopeptide resistance genes across all strains, with two strains additionally harboring vanT. These results reveal the genetic mechanisms behind <i>S. thermophilus</i> adaptation to traditional yogurt environments, offering valuable insights for developing starter cultures and preserving the unique qualities and potential health benefits of traditional dairy products.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"118 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10482-025-02070-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Streptococcus thermophilus plays a pivotal role in yogurt fermentation, yet strains from traditional fermented products remain largely unexplored compared to their industrial counterparts. This study aimed to characterize the genomic diversity and functional potential of 15 S. thermophilus strains isolated from Turkish traditional yogurts, and to compare them with industrial strains. Through whole-genome sequencing and advanced bioinformatics analyses, we revealed distinct phylogenetic patterns and genetic features that differentiate these traditional strains from industrial isolates. The genomes (1.68–1.86 Mb) exhibited high genetic homogeneity (ANI > 98.69%) while maintaining significant functional diversity. Pan-genome analysis identified 1160 core genes and 5694 accessory genes, highlighting substantial genomic plasticity that enables niche adaptation. Our analysis uncovered several distinctive features: (1) unique phylogenetic clustering patterns based on both housekeeping genes and whole-genome SNPs, suggesting geographical isolation effects; (2) an extensive repertoire of carbohydrate-active enzymes (CAZymes), comprising 111 Glycoside Hydrolases, 227 Glycosyl Transferases, and 44 Carbohydrate Esterases and 13 Carbohydrate-Binding Modules, demonstrating sophisticated carbohydrate metabolism adaptation significantly enriched compared to industrial strains; (3) widespread GABA biosynthesis pathways in 8 strains, including complete gadB gene, indicating potential health-promoting properties; (4) multiple genomic islands containing genes for galactose utilization and stress response, suggesting specific adaptation to traditional fermentation environments; (5) diverse exopolysaccharide biosynthesis and bacteriocin gene clusters; and (6) widespread CRISPR-Cas systems with variable spacer content. Notably, we identified vanY glycopeptide resistance genes across all strains, with two strains additionally harboring vanT. These results reveal the genetic mechanisms behind S. thermophilus adaptation to traditional yogurt environments, offering valuable insights for developing starter cultures and preserving the unique qualities and potential health benefits of traditional dairy products.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
11.50%
发文量
104
审稿时长
3 months
期刊介绍: Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信