Rapid photosynthesis of cellulose nanofibril-based imprinted membrane for selective colorimetric determination of isoniazid

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Fatima Ezzahra Rejdal, Ouarda El Hani, Abderrahman Lamaoui, Youssef Habibi, Aziz Amine
{"title":"Rapid photosynthesis of cellulose nanofibril-based imprinted membrane for selective colorimetric determination of isoniazid","authors":"Fatima Ezzahra Rejdal,&nbsp;Ouarda El Hani,&nbsp;Abderrahman Lamaoui,&nbsp;Youssef Habibi,&nbsp;Aziz Amine","doi":"10.1007/s00604-025-07110-3","DOIUrl":null,"url":null,"abstract":"<div><p>Molecularly imprinted membranes (MIMs) have attracted considerable interest in sensing applications. This study presents a novel rapid UV-assisted photopolymerization technique for synthesizing MIM using cellulose nanofibers (CNF) as the membrane matrix and isoniazid (INH) as the target analyte. The MIM was synthesized rapidly in 5 min, outpacing traditional methods in speed and efficiency. The integration of CNF endowed the membrane with outstanding stability in organic solvents, along with excellent mechanical flexibility and rigidity. These properties, combined with the superior tensile strength and structural integrity, make MIM an excellent candidate for high-performance sensing applications. The MIM was characterized using X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, mechanical testing, and scanning electron microscopy to evaluate its semicrystalline, thermal, structural, and mechanical properties. A rapid, simple, and highly sensitive colorimetric method for INH determination  was developed utilizing 4-nitrobenzaldehyde and an alkaline phosphate buffer. The MIM exhibited a notable limit of detection (LOD) of 0.03 µg/mL and a limit of quantification (LOQ) of 0.1 µg/mL, with the capability to detect trace levels of INH (0.16 ng/mL) through preconcentration using a solid-phase extraction column. The method was successfully tested in spiked river water and saliva samples, yielding excellent recovery ranging from 94.21 to 100%. This MIM-based sensor provides a practical, high-performance solution for real-time, on-site INH monitoring. Its innovative design and cost-effectiveness offer substantial potential for enhancing environmental safety and public health surveillance, setting a new benchmark for field-deployable analysis technologies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07110-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molecularly imprinted membranes (MIMs) have attracted considerable interest in sensing applications. This study presents a novel rapid UV-assisted photopolymerization technique for synthesizing MIM using cellulose nanofibers (CNF) as the membrane matrix and isoniazid (INH) as the target analyte. The MIM was synthesized rapidly in 5 min, outpacing traditional methods in speed and efficiency. The integration of CNF endowed the membrane with outstanding stability in organic solvents, along with excellent mechanical flexibility and rigidity. These properties, combined with the superior tensile strength and structural integrity, make MIM an excellent candidate for high-performance sensing applications. The MIM was characterized using X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, mechanical testing, and scanning electron microscopy to evaluate its semicrystalline, thermal, structural, and mechanical properties. A rapid, simple, and highly sensitive colorimetric method for INH determination  was developed utilizing 4-nitrobenzaldehyde and an alkaline phosphate buffer. The MIM exhibited a notable limit of detection (LOD) of 0.03 µg/mL and a limit of quantification (LOQ) of 0.1 µg/mL, with the capability to detect trace levels of INH (0.16 ng/mL) through preconcentration using a solid-phase extraction column. The method was successfully tested in spiked river water and saliva samples, yielding excellent recovery ranging from 94.21 to 100%. This MIM-based sensor provides a practical, high-performance solution for real-time, on-site INH monitoring. Its innovative design and cost-effectiveness offer substantial potential for enhancing environmental safety and public health surveillance, setting a new benchmark for field-deployable analysis technologies.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信