{"title":"Development of a metal-organic framework-based nanosensor for determination of cyclosporine in plasma samples","authors":"Reza Moharami, Zahra Karimzadeh, Zahra Golsanamlu, Afshin Gharakhani, Elaheh Rahimpour, Abolghasem Jouyban","doi":"10.1186/s13065-025-01456-8","DOIUrl":null,"url":null,"abstract":"<div><p>According to the narrow therapeutic range and multiple adverse effects of cyclosporine and the need for its therapeutic drug monitoring (TDM), in this study, an efficient zeolitic imidazolate framework-8 metal-organic framework (ZIF-8 MOF) based nanoprobe was designed for simple, rapid and high sensitive its quantification in plasma samples. After the successful synthesis of the ZIF-8 MOF, under the optimum condition, the fluorescence emission of ZIF-8 MOF, measured at an excitation wavelength of 370 nm and an emission wavelength of 417 nm, was enhanced with increasing cyclosporine concentration, due to the specific interactions between cyclosporine and the nanoprobe, including hydrogen bonding and hydrophobic effects. The nanoprobe showed a linear correlation between the analytical response and cyclosporine concentration in the concentration range of 0.01–1.0 µg mL<sup>− 1</sup>, with a detection limit of 0.003 µg mL<sup>− 1</sup>. Acceptable precision was achieved, evidenced by intra-day and inter-day relative standard deviations of 0.4% and 0.5%, respectively. Recovery between 97.1% and 102.1% in plasma samples indicated the method’s reliability in practical applications.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01456-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01456-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
According to the narrow therapeutic range and multiple adverse effects of cyclosporine and the need for its therapeutic drug monitoring (TDM), in this study, an efficient zeolitic imidazolate framework-8 metal-organic framework (ZIF-8 MOF) based nanoprobe was designed for simple, rapid and high sensitive its quantification in plasma samples. After the successful synthesis of the ZIF-8 MOF, under the optimum condition, the fluorescence emission of ZIF-8 MOF, measured at an excitation wavelength of 370 nm and an emission wavelength of 417 nm, was enhanced with increasing cyclosporine concentration, due to the specific interactions between cyclosporine and the nanoprobe, including hydrogen bonding and hydrophobic effects. The nanoprobe showed a linear correlation between the analytical response and cyclosporine concentration in the concentration range of 0.01–1.0 µg mL− 1, with a detection limit of 0.003 µg mL− 1. Acceptable precision was achieved, evidenced by intra-day and inter-day relative standard deviations of 0.4% and 0.5%, respectively. Recovery between 97.1% and 102.1% in plasma samples indicated the method’s reliability in practical applications.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.