Multiple dynamic bonds enable high mechanical strength and efficient room-temperature self-healable polyurethane for triboelectric nanogenerators

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenwen Zhang, Huixia Xuan, Xiaofei Xu, Jiaming Lou, Qingbao Guan, Zhengwei You
{"title":"Multiple dynamic bonds enable high mechanical strength and efficient room-temperature self-healable polyurethane for triboelectric nanogenerators","authors":"Wenwen Zhang,&nbsp;Huixia Xuan,&nbsp;Xiaofei Xu,&nbsp;Jiaming Lou,&nbsp;Qingbao Guan,&nbsp;Zhengwei You","doi":"10.1007/s11426-024-2298-y","DOIUrl":null,"url":null,"abstract":"<div><p>For room temperature self-healing triboelectric nanogenerators (TENGs), the inherent contradiction between mechanical strength and self-healing properties was an urgent problem to be solved. Based on the phenol-carbamate bond, this paper proposed a strategy to design a new molecular structure and coordinate the triple dynamic bonds, which provided a feasible strategy to solve this contradiction. With polytetramethylene ether glycol (<i>M</i><sub>n</sub> = 1,000) as the soft segment in the main chain of polyurethane (PU), meanwhile methylene diphenyl diisocyanate and 4,4′-dihydroxybiphenyl (BP) as the hard segment and chain extension agent, respectively, the combination of tetrad benzene ring endowed the resultant 4BP-PU with π-π interaction. The effective reversible dissociation and association with hydrogen bond not only bestowed 4BP-PU with high mechanical strength (16.14 MPa), but also promoted high self-healing efficiency (94.8%) at room temperature. 4BP-PU was selected as the elastic substrate between polydimethylsiloxane and copper sheet to prepare a self-healing TENG to collect energy from natural motion. Consequently, the rational molecular structure design provided new ideas for developing self-healing materials and fabricating energy harvest electronics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 4","pages":"1468 - 1477"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2298-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For room temperature self-healing triboelectric nanogenerators (TENGs), the inherent contradiction between mechanical strength and self-healing properties was an urgent problem to be solved. Based on the phenol-carbamate bond, this paper proposed a strategy to design a new molecular structure and coordinate the triple dynamic bonds, which provided a feasible strategy to solve this contradiction. With polytetramethylene ether glycol (Mn = 1,000) as the soft segment in the main chain of polyurethane (PU), meanwhile methylene diphenyl diisocyanate and 4,4′-dihydroxybiphenyl (BP) as the hard segment and chain extension agent, respectively, the combination of tetrad benzene ring endowed the resultant 4BP-PU with π-π interaction. The effective reversible dissociation and association with hydrogen bond not only bestowed 4BP-PU with high mechanical strength (16.14 MPa), but also promoted high self-healing efficiency (94.8%) at room temperature. 4BP-PU was selected as the elastic substrate between polydimethylsiloxane and copper sheet to prepare a self-healing TENG to collect energy from natural motion. Consequently, the rational molecular structure design provided new ideas for developing self-healing materials and fabricating energy harvest electronics.

多种动态键为摩擦电纳米发电机提供了高机械强度和高效的室温自愈聚氨酯
对于室温自愈摩擦纳米发电机(TENGs)来说,机械强度与自愈性能之间的内在矛盾是一个亟待解决的问题。本文以苯酚-氨基甲酸酯键为基础,提出了一种设计新的分子结构并协调三动态键的策略,为解决这一矛盾提供了一种可行的策略。以聚四甲基醚乙二醇(Mn = 1000)为主链软段,亚甲基二苯基二异氰酸酯和4,4′-二羟基联苯(BP)分别为硬段和扩链剂,四苯环的结合使合成的4BP-PU具有π-π相互作用。有效的氢键可逆解离和缔合不仅使4BP-PU具有较高的机械强度(16.14 MPa),而且在室温下具有较高的自愈效率(94.8%)。选择4BP-PU作为聚二甲基硅氧烷和铜片之间的弹性衬底,制备了一种自修复的TENG,用于从自然运动中收集能量。因此,合理的分子结构设计为开发自修复材料和制造能量收集电子产品提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信