O. Mammeri, F. Bouremmad, F. Chouikh, M. Benamira, F. Z. Akika, M. Mutlu Can, I. Avramova, A. Djermoune
{"title":"Pure monoclinic n-BiVO4 prepared by modified sol–gel method for high efficiency photodegradation of methylene blue under solar light irradiation","authors":"O. Mammeri, F. Bouremmad, F. Chouikh, M. Benamira, F. Z. Akika, M. Mutlu Can, I. Avramova, A. Djermoune","doi":"10.1007/s11144-024-02765-0","DOIUrl":null,"url":null,"abstract":"<div><p>Monoclinic BiVO<sub>4</sub> was synthesized by a modified sol–gel technique, using bismuth nitrate pentahydrate Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O and vanadium pentoxide V<sub>2</sub>O<sub>5</sub> as precursors, dissolved in nitric acid and hydrochloric acid. The prepared samples were characterized by Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM–EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and UV–Vis Diffuse Reflectance Spectroscopy (DRS). The band gap of BiVO<sub>4</sub> was determined to be 2.53 eV. The Mott-Schottky plot identifies BiVO<sub>4</sub> as a n-type semiconductor with a flat band potential of 0.64 V/SCE and an electron donor density (Nd) of 1.46 × 10<sup>16</sup> (site cm<sup>−3</sup>). Electrochemical impedance spectroscopy confirmed efficient photogenerated electron–hole (e<sup>−</sup>/h<sup>+</sup>) pair separation. Under solar irradiation, BiVO<sub>4</sub> exhibited high photocatalytic efficiency with 96% methylene blue (MB) degradation achieved within 120 min. The photodegradation process is well fitted by a first-order kinetic model, and parameters affecting MB degradation, such as pH and initial concentration, were optimized. A photocatalytic mechanism was proposed in accordance with the scavenger test.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"138 2","pages":"1095 - 1111"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02765-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monoclinic BiVO4 was synthesized by a modified sol–gel technique, using bismuth nitrate pentahydrate Bi(NO3)3·5H2O and vanadium pentoxide V2O5 as precursors, dissolved in nitric acid and hydrochloric acid. The prepared samples were characterized by Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM–EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and UV–Vis Diffuse Reflectance Spectroscopy (DRS). The band gap of BiVO4 was determined to be 2.53 eV. The Mott-Schottky plot identifies BiVO4 as a n-type semiconductor with a flat band potential of 0.64 V/SCE and an electron donor density (Nd) of 1.46 × 1016 (site cm−3). Electrochemical impedance spectroscopy confirmed efficient photogenerated electron–hole (e−/h+) pair separation. Under solar irradiation, BiVO4 exhibited high photocatalytic efficiency with 96% methylene blue (MB) degradation achieved within 120 min. The photodegradation process is well fitted by a first-order kinetic model, and parameters affecting MB degradation, such as pH and initial concentration, were optimized. A photocatalytic mechanism was proposed in accordance with the scavenger test.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.