Xueting Lu, Lei Wang, Liangxuan Ren, Wen Li, Afang Zhang
{"title":"Thermoresponsive helical dendronized poly(arylacetylene)s: modulating the dynamic chirality","authors":"Xueting Lu, Lei Wang, Liangxuan Ren, Wen Li, Afang Zhang","doi":"10.1007/s11426-024-2302-8","DOIUrl":null,"url":null,"abstract":"<div><p>Helical poly(arylacetylene)s have formed an intriguing class of polymers, whose chiralities are dynamic and liable to external stimuli. By combining dendronized polymer topology with dendritic oligoethylene glycols (OEGs), we here report on synthesis of a homologous series of thermoresponsive dendronized poly(arylacetylene)s with either poly(phenyl acetylene) or poly (naphthalene acetylene) as the backbones, and investigate tunability of their helical conformations. These polymers carry dendritic OEG pendants with either methoxyl- or ethoxyl-terminals to tune their unprecedent thermoresponsive behaviors, and at the same time, dendritic shielding plays an important role in mediating their thermal phase transition temperatures. Helicity of these polymers is originated from the chiral alanine or phenylalanine moieties within the dendritic pendants, which can be tailored through manipulating solvation in different organic solvents or via thermal dehydration and collapse in water. Furthermore, achiral additives such as linear or dendritic OEGs and benzene derivatives can act similarly as thermal dehydration to induce chirality transitions of these polymers in aqueous phase through interplay competitions between the additives and the polymers against their hydration.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 4","pages":"1486 - 1496"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2302-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Helical poly(arylacetylene)s have formed an intriguing class of polymers, whose chiralities are dynamic and liable to external stimuli. By combining dendronized polymer topology with dendritic oligoethylene glycols (OEGs), we here report on synthesis of a homologous series of thermoresponsive dendronized poly(arylacetylene)s with either poly(phenyl acetylene) or poly (naphthalene acetylene) as the backbones, and investigate tunability of their helical conformations. These polymers carry dendritic OEG pendants with either methoxyl- or ethoxyl-terminals to tune their unprecedent thermoresponsive behaviors, and at the same time, dendritic shielding plays an important role in mediating their thermal phase transition temperatures. Helicity of these polymers is originated from the chiral alanine or phenylalanine moieties within the dendritic pendants, which can be tailored through manipulating solvation in different organic solvents or via thermal dehydration and collapse in water. Furthermore, achiral additives such as linear or dendritic OEGs and benzene derivatives can act similarly as thermal dehydration to induce chirality transitions of these polymers in aqueous phase through interplay competitions between the additives and the polymers against their hydration.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.