E. Murugesan, R. Dhairiyasamy, D. Varshney, S. Singh
{"title":"Advanced Materials for Emission Reduction: Role of Nanoparticles and Metal-Coated Catalytic Converters in Biodiesel Combustion","authors":"E. Murugesan, R. Dhairiyasamy, D. Varshney, S. Singh","doi":"10.1134/S1070363224613450","DOIUrl":null,"url":null,"abstract":"<p>Biodiesel, a renewable and biodegradable fuel, offers significant environmental advantages but faces challenges such as lower combustion efficiency and increased nitrogen oxide (NO<sub><i>x</i></sub>) emissions compared to diesel. Addressing these limitations requires innovative material-based approaches. This study explores the combined effects of nanoparticle-enhanced biodiesel and Fe/Zn-coated catalytic converters on engine performance and emissions, addressing a gap in understanding the synergistic potential of these materials. The objective was to assess how cerium oxide (CeO<sub>2</sub>) and zinc oxide (ZnO) nanoparticles, integrated with advanced catalytic coatings, influence combustion and emission characteristics. Using a single-cylinder diesel engine, performance metrics such as brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) were analyzed, alongside emissions of NO<sub><i>x</i></sub>, carbon monoxide (CO), and particulate matter (PM). Results revealed significant improvements in BTE (up to 34.5%) and reductions in NO<sub><i>x</i></sub> (15%) and PM emissions (28%) with nanoparticle-enhanced biodiesel and catalytic converters. These findings highlight the transformative potential of material innovations in sustainable energy technologies. Future research should explore the scalability and long-term environmental impacts of these materials.</p>","PeriodicalId":761,"journal":{"name":"Russian Journal of General Chemistry","volume":"95 3","pages":"773 - 780"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of General Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070363224613450","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biodiesel, a renewable and biodegradable fuel, offers significant environmental advantages but faces challenges such as lower combustion efficiency and increased nitrogen oxide (NOx) emissions compared to diesel. Addressing these limitations requires innovative material-based approaches. This study explores the combined effects of nanoparticle-enhanced biodiesel and Fe/Zn-coated catalytic converters on engine performance and emissions, addressing a gap in understanding the synergistic potential of these materials. The objective was to assess how cerium oxide (CeO2) and zinc oxide (ZnO) nanoparticles, integrated with advanced catalytic coatings, influence combustion and emission characteristics. Using a single-cylinder diesel engine, performance metrics such as brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) were analyzed, alongside emissions of NOx, carbon monoxide (CO), and particulate matter (PM). Results revealed significant improvements in BTE (up to 34.5%) and reductions in NOx (15%) and PM emissions (28%) with nanoparticle-enhanced biodiesel and catalytic converters. These findings highlight the transformative potential of material innovations in sustainable energy technologies. Future research should explore the scalability and long-term environmental impacts of these materials.
期刊介绍:
Russian Journal of General Chemistry is a journal that covers many problems that are of general interest to the whole community of chemists. The journal is the successor to Russia’s first chemical journal, Zhurnal Russkogo Khimicheskogo Obshchestva (Journal of the Russian Chemical Society ) founded in 1869 to cover all aspects of chemistry. Now the journal is focused on the interdisciplinary areas of chemistry (organometallics, organometalloids, organoinorganic complexes, mechanochemistry, nanochemistry, etc.), new achievements and long-term results in the field. The journal publishes reviews, current scientific papers, letters to the editor, and discussion papers.