High-performance flexible UV sensor based on CNT-PAN/Ga2O3 composite films

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jing Wang, Jing Xie
{"title":"High-performance flexible UV sensor based on CNT-PAN/Ga2O3 composite films","authors":"Jing Wang,&nbsp;Jing Xie","doi":"10.1007/s10854-025-14624-2","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible photoelectric sensors with high stretchability and easy integration have accelerated the evolution of wearable electronic devices. The CNTs (carbon nanotubes)-based composites are a suitable alternative to the preparation of sensing materials by virtue of the remarkable performance. Hitherto, the preparation process aimed at fabricating the versatile flexible photoelectric devices has been constrained due to the poor charge separation and photoelectric conversion efficiency under the circumstance of extension, bending, or folding. Here, we develop a novel technique involving the in situ polymerization and co-precipitation method to prepare the CNT-PAN (CNT-polyaniline) composite and Ga<sub>2</sub>O<sub>3</sub>, which are deposited on the surface of sensor, respectively, which consisted of the interdigital Au electrode and flexible PDMS substrate. The study manifests the synergetic transformation of the flexibility and photoelectric property. The modification of PAN improves the stretchability and charge transfer capability via the active functional groups on the polyaniline and strong π–π electrons interaction between CNT and PAN. The introduction of Ga<sub>2</sub>O<sub>3</sub> enhances the light–matter interaction. On this basis, the CNT-PAN and Ga<sub>2</sub>O<sub>3</sub> are deposited on the surface of sensor, respectively, which consisted of the interdigital Au electrode and flexible PDMS substrate for the sake of enhancing the light–matter interaction. The study manifests that photoconductive property was enhanced by the assembly process. The findings provide enlightenment into the exploration of multi-performance optoelectronic devices.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14624-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible photoelectric sensors with high stretchability and easy integration have accelerated the evolution of wearable electronic devices. The CNTs (carbon nanotubes)-based composites are a suitable alternative to the preparation of sensing materials by virtue of the remarkable performance. Hitherto, the preparation process aimed at fabricating the versatile flexible photoelectric devices has been constrained due to the poor charge separation and photoelectric conversion efficiency under the circumstance of extension, bending, or folding. Here, we develop a novel technique involving the in situ polymerization and co-precipitation method to prepare the CNT-PAN (CNT-polyaniline) composite and Ga2O3, which are deposited on the surface of sensor, respectively, which consisted of the interdigital Au electrode and flexible PDMS substrate. The study manifests the synergetic transformation of the flexibility and photoelectric property. The modification of PAN improves the stretchability and charge transfer capability via the active functional groups on the polyaniline and strong π–π electrons interaction between CNT and PAN. The introduction of Ga2O3 enhances the light–matter interaction. On this basis, the CNT-PAN and Ga2O3 are deposited on the surface of sensor, respectively, which consisted of the interdigital Au electrode and flexible PDMS substrate for the sake of enhancing the light–matter interaction. The study manifests that photoconductive property was enhanced by the assembly process. The findings provide enlightenment into the exploration of multi-performance optoelectronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信