Pillararene based supramolecular nanoplatform for endoplasmic reticulum-targeting type I photodynamic and NO gas therapy

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaoqi Xie  (, ), Chang Liu  (, ), Yue Cao  (, ), Jiachen Xia  (, ), Bing Lu  (, )
{"title":"Pillararene based supramolecular nanoplatform for endoplasmic reticulum-targeting type I photodynamic and NO gas therapy","authors":"Shaoqi Xie \n (,&nbsp;),&nbsp;Chang Liu \n (,&nbsp;),&nbsp;Yue Cao \n (,&nbsp;),&nbsp;Jiachen Xia \n (,&nbsp;),&nbsp;Bing Lu \n (,&nbsp;)","doi":"10.1007/s40843-024-3268-6","DOIUrl":null,"url":null,"abstract":"<div><p>The development of tumor-targeted multimodality therapy is an important strategy to improve the curative effects of cancer treatment. It is critical to construct such a platform that can perfectly integrate these functional entities into one. Herein, we designed a phenyl sulfonamide-modified pillararene WP5-PEG-BSA. WP5-PEG-BSA can be used to construct endoplasmic reticulum (ER)-targeting nanocarriers. Then NO donor <i>S</i>-nitroso-<i>N</i>-acetyl-<i>D</i>-penicillamine (SNAP) and the newly designed photosensitizer DPP-DMATPE were loaded into the nanocarriers via different paths. Under laser irradiation, DPP-DMATPE exhibited excellent type I photodynamic activity, while SNAP can release NO under the action of glutathione. The formed nanodrugs BSA-DPP/SNAP exhibited outstanding ER-targeting and high lethality towards tumor cells as well as biocompability. What’s even more worth saying is that BSA-DPP/SNAP performed well even in hypoxic tumor cells. The final experimental results <i>in vivo</i> again confirmed the good therapeutic effects of BSA-DPP/SNAP. As a result, a supramolecular nanoplatform that realizes highly efficient ER-targeting type I photodynamic and NO gas cancer therapy was constructed.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 4","pages":"1285 - 1291"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3268-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of tumor-targeted multimodality therapy is an important strategy to improve the curative effects of cancer treatment. It is critical to construct such a platform that can perfectly integrate these functional entities into one. Herein, we designed a phenyl sulfonamide-modified pillararene WP5-PEG-BSA. WP5-PEG-BSA can be used to construct endoplasmic reticulum (ER)-targeting nanocarriers. Then NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) and the newly designed photosensitizer DPP-DMATPE were loaded into the nanocarriers via different paths. Under laser irradiation, DPP-DMATPE exhibited excellent type I photodynamic activity, while SNAP can release NO under the action of glutathione. The formed nanodrugs BSA-DPP/SNAP exhibited outstanding ER-targeting and high lethality towards tumor cells as well as biocompability. What’s even more worth saying is that BSA-DPP/SNAP performed well even in hypoxic tumor cells. The final experimental results in vivo again confirmed the good therapeutic effects of BSA-DPP/SNAP. As a result, a supramolecular nanoplatform that realizes highly efficient ER-targeting type I photodynamic and NO gas cancer therapy was constructed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信