Drying reduces the total PFAS concentration in biosolids and alters the PFAS profile†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Patrick J. McNamara, Jessica Calteux, Eric Redman, Taryn McKnight, Lynne Moss, Webster Hoener, Scott Carr and Zhongzhe Liu
{"title":"Drying reduces the total PFAS concentration in biosolids and alters the PFAS profile†","authors":"Patrick J. McNamara, Jessica Calteux, Eric Redman, Taryn McKnight, Lynne Moss, Webster Hoener, Scott Carr and Zhongzhe Liu","doi":"10.1039/D4EW00890A","DOIUrl":null,"url":null,"abstract":"<p >While per- and polyfluoroalkyl substances (PFAS) are not actually generated at water resource recovery facilities (WRRFs), utilities are being forced to consider PFAS in biosolids management plans due to mounting political pressure and pending regulations. Emerging thermal technologies including pyrolysis, gasification, and super critical water oxidation have garnered recent attention for PFAS destruction. Drying, however, is a conventional technology that might also be a tool for utilities to manage PFAS in biosolids, but research on the impacts of drying on PFAS in biosolids is scarce. The objective of this research was to determine how drying affected the fate of PFAS in biosolids. Full-scale sampling was paired with lab-scale oven drying experiments to understand the impact of drying on measurable PFAS in biosolids. Overall, drying substantially reduced the total PFAS concentration in biosolids. PFAS removal during a full-scale facility's drying process matched the removal achieved when solids were taken from that facility and dried in a lab-scale oven instead, with average PFAS removal being approximately 80%. Precursors to perfluoroalkyl acids (PFAAs), primarily 5 : 3 fluorotelomer carboxylic acid (FTCA) and 6 : 2 FTCA, as well as perfluorooctane sulfonic acid (PFOS) were substantially reduced between pre-drying and post-drying triplicate samples. Additional lab-scale oven drying experiments corroborated that measurable PFAS were removed from biosolids collected from three different utilities. Drying experiments at 30 °C and 105 °C revealed that the PFAS profiles were similar, but PFAS concentrations were lower in the 105 °C samples compared to 30 °C samples. While more research is necessary to determine and validate the removal mechanism, drying could be a viable technology to reduce measurable PFAS levels in biosolids to concentrations below guidelines for land application.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 4","pages":" 1007-1015"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d4ew00890a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00890a","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

While per- and polyfluoroalkyl substances (PFAS) are not actually generated at water resource recovery facilities (WRRFs), utilities are being forced to consider PFAS in biosolids management plans due to mounting political pressure and pending regulations. Emerging thermal technologies including pyrolysis, gasification, and super critical water oxidation have garnered recent attention for PFAS destruction. Drying, however, is a conventional technology that might also be a tool for utilities to manage PFAS in biosolids, but research on the impacts of drying on PFAS in biosolids is scarce. The objective of this research was to determine how drying affected the fate of PFAS in biosolids. Full-scale sampling was paired with lab-scale oven drying experiments to understand the impact of drying on measurable PFAS in biosolids. Overall, drying substantially reduced the total PFAS concentration in biosolids. PFAS removal during a full-scale facility's drying process matched the removal achieved when solids were taken from that facility and dried in a lab-scale oven instead, with average PFAS removal being approximately 80%. Precursors to perfluoroalkyl acids (PFAAs), primarily 5 : 3 fluorotelomer carboxylic acid (FTCA) and 6 : 2 FTCA, as well as perfluorooctane sulfonic acid (PFOS) were substantially reduced between pre-drying and post-drying triplicate samples. Additional lab-scale oven drying experiments corroborated that measurable PFAS were removed from biosolids collected from three different utilities. Drying experiments at 30 °C and 105 °C revealed that the PFAS profiles were similar, but PFAS concentrations were lower in the 105 °C samples compared to 30 °C samples. While more research is necessary to determine and validate the removal mechanism, drying could be a viable technology to reduce measurable PFAS levels in biosolids to concentrations below guidelines for land application.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信