Patrick J. McNamara, Jessica Calteux, Eric Redman, Taryn McKnight, Lynne Moss, Webster Hoener, Scott Carr and Zhongzhe Liu
{"title":"Drying reduces the total PFAS concentration in biosolids and alters the PFAS profile†","authors":"Patrick J. McNamara, Jessica Calteux, Eric Redman, Taryn McKnight, Lynne Moss, Webster Hoener, Scott Carr and Zhongzhe Liu","doi":"10.1039/D4EW00890A","DOIUrl":null,"url":null,"abstract":"<p >While per- and polyfluoroalkyl substances (PFAS) are not actually generated at water resource recovery facilities (WRRFs), utilities are being forced to consider PFAS in biosolids management plans due to mounting political pressure and pending regulations. Emerging thermal technologies including pyrolysis, gasification, and super critical water oxidation have garnered recent attention for PFAS destruction. Drying, however, is a conventional technology that might also be a tool for utilities to manage PFAS in biosolids, but research on the impacts of drying on PFAS in biosolids is scarce. The objective of this research was to determine how drying affected the fate of PFAS in biosolids. Full-scale sampling was paired with lab-scale oven drying experiments to understand the impact of drying on measurable PFAS in biosolids. Overall, drying substantially reduced the total PFAS concentration in biosolids. PFAS removal during a full-scale facility's drying process matched the removal achieved when solids were taken from that facility and dried in a lab-scale oven instead, with average PFAS removal being approximately 80%. Precursors to perfluoroalkyl acids (PFAAs), primarily 5 : 3 fluorotelomer carboxylic acid (FTCA) and 6 : 2 FTCA, as well as perfluorooctane sulfonic acid (PFOS) were substantially reduced between pre-drying and post-drying triplicate samples. Additional lab-scale oven drying experiments corroborated that measurable PFAS were removed from biosolids collected from three different utilities. Drying experiments at 30 °C and 105 °C revealed that the PFAS profiles were similar, but PFAS concentrations were lower in the 105 °C samples compared to 30 °C samples. While more research is necessary to determine and validate the removal mechanism, drying could be a viable technology to reduce measurable PFAS levels in biosolids to concentrations below guidelines for land application.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 4","pages":" 1007-1015"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d4ew00890a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00890a","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
While per- and polyfluoroalkyl substances (PFAS) are not actually generated at water resource recovery facilities (WRRFs), utilities are being forced to consider PFAS in biosolids management plans due to mounting political pressure and pending regulations. Emerging thermal technologies including pyrolysis, gasification, and super critical water oxidation have garnered recent attention for PFAS destruction. Drying, however, is a conventional technology that might also be a tool for utilities to manage PFAS in biosolids, but research on the impacts of drying on PFAS in biosolids is scarce. The objective of this research was to determine how drying affected the fate of PFAS in biosolids. Full-scale sampling was paired with lab-scale oven drying experiments to understand the impact of drying on measurable PFAS in biosolids. Overall, drying substantially reduced the total PFAS concentration in biosolids. PFAS removal during a full-scale facility's drying process matched the removal achieved when solids were taken from that facility and dried in a lab-scale oven instead, with average PFAS removal being approximately 80%. Precursors to perfluoroalkyl acids (PFAAs), primarily 5 : 3 fluorotelomer carboxylic acid (FTCA) and 6 : 2 FTCA, as well as perfluorooctane sulfonic acid (PFOS) were substantially reduced between pre-drying and post-drying triplicate samples. Additional lab-scale oven drying experiments corroborated that measurable PFAS were removed from biosolids collected from three different utilities. Drying experiments at 30 °C and 105 °C revealed that the PFAS profiles were similar, but PFAS concentrations were lower in the 105 °C samples compared to 30 °C samples. While more research is necessary to determine and validate the removal mechanism, drying could be a viable technology to reduce measurable PFAS levels in biosolids to concentrations below guidelines for land application.
期刊介绍:
Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.