Disparities in potential nitrate exposures within Iowa public water systems†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Emmanuel Padmore Mantey, Lu Liu and Chris R. Rehmann
{"title":"Disparities in potential nitrate exposures within Iowa public water systems†","authors":"Emmanuel Padmore Mantey, Lu Liu and Chris R. Rehmann","doi":"10.1039/D4EW00907J","DOIUrl":null,"url":null,"abstract":"<p >Nitrates (measured as nitrate-nitrogen) in drinking water exceeding the maximum contaminant level (MCL) of 10 mg L<small><sup>−1</sup></small> can cause significant health risks, such as methemoglobinemia. Even long-term exposure to concentrations below the MCL can also increase the risks of cancer. Iowa, a major agricultural producer, has grappled with decades-long nitrate pollution in its water systems due to intensive farming practices and animal feeding operations. To help in developing interventions and policies to protect public health, this study delves into long-term nitrate levels in 871 Iowa public water systems (PWSs) between 2012 and 2022 and examines sociodemographic disparities in potential nitrate exposure in drinking water. Average nitrate concentration in Iowa's PWSs increased between 2012 and 2016, reaching an average peak of 3 mg L<small><sup>−1</sup></small> in 2016. 2.5% of 871 PWSs are classified as ‘high-risk’, with nitrate concentrations consistently exceeding 5 mg L<small><sup>−1</sup></small> over the study period, primarily in eastern and western Iowa, where animal feeding operations are concentrated. The absence of nitrate removal processes at these PWSs contributes to the sustained elevated levels. On average, 7.4% of the state's population served by PWSs has been exposed to nitrate levels consistently exceeding 5 mg L<small><sup>−1</sup></small> in the past decade. Disparities exist among various sociodemographic groups, with statistically significant higher exposure rates (10.1%, 9.6%, 9.2%, and 8.7%) observed for people whose incomes are below the federal poverty threshold ($26 496/year), older adults (65 years and above), people of colour, and children (5 years and younger). These disparities are particularly concerning as these populations often lack the resources to address the consequences of water contamination. Our study highlights inequities in Iowa's PWSs concerning potential nitrate exposures and underscores a need for nitrate remediation in specific areas. Addressing these disparities is crucial to safeguarding the health of vulnerable populations and promoting environmental justice in water management.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 4","pages":" 959-971"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d4ew00907j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00907j","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrates (measured as nitrate-nitrogen) in drinking water exceeding the maximum contaminant level (MCL) of 10 mg L−1 can cause significant health risks, such as methemoglobinemia. Even long-term exposure to concentrations below the MCL can also increase the risks of cancer. Iowa, a major agricultural producer, has grappled with decades-long nitrate pollution in its water systems due to intensive farming practices and animal feeding operations. To help in developing interventions and policies to protect public health, this study delves into long-term nitrate levels in 871 Iowa public water systems (PWSs) between 2012 and 2022 and examines sociodemographic disparities in potential nitrate exposure in drinking water. Average nitrate concentration in Iowa's PWSs increased between 2012 and 2016, reaching an average peak of 3 mg L−1 in 2016. 2.5% of 871 PWSs are classified as ‘high-risk’, with nitrate concentrations consistently exceeding 5 mg L−1 over the study period, primarily in eastern and western Iowa, where animal feeding operations are concentrated. The absence of nitrate removal processes at these PWSs contributes to the sustained elevated levels. On average, 7.4% of the state's population served by PWSs has been exposed to nitrate levels consistently exceeding 5 mg L−1 in the past decade. Disparities exist among various sociodemographic groups, with statistically significant higher exposure rates (10.1%, 9.6%, 9.2%, and 8.7%) observed for people whose incomes are below the federal poverty threshold ($26 496/year), older adults (65 years and above), people of colour, and children (5 years and younger). These disparities are particularly concerning as these populations often lack the resources to address the consequences of water contamination. Our study highlights inequities in Iowa's PWSs concerning potential nitrate exposures and underscores a need for nitrate remediation in specific areas. Addressing these disparities is crucial to safeguarding the health of vulnerable populations and promoting environmental justice in water management.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信