Solar-powered electrocoagulation for the removal of atrazine with and without microplastics†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Bishwatma Biswas, Anju Joshy and Sudha Goel
{"title":"Solar-powered electrocoagulation for the removal of atrazine with and without microplastics†","authors":"Bishwatma Biswas, Anju Joshy and Sudha Goel","doi":"10.1039/D4EW00809J","DOIUrl":null,"url":null,"abstract":"<p >Emerging contaminants, particularly pesticides and microplastics (MPs), pose a substantial risk to both human beings and ecosystems. While atrazine (ATZ) and MPs have been found to coexist in environmental media, limited studies have investigated their combined interaction and removal. Moreover, the application of electrocoagulation (EC) for simultaneously addressing these contaminants remains unexplored. This study was conducted with ATZ concentration (3–20 mg L<small><sup>−1</sup></small>), where the effects of electrode materials, current density, pH, and supporting electrolyte concentration were analysed. In general, the removal kinetics for ATZ were best described by the first-order model for both Al and Cu electrodes. The ATZ removal efficiencies were evaluated in real water matrices and found to be 79.85 ± 1.03, 75.92 ± 1.25, 70.58 ± 1.49, 68.09 ± 1.10, and 64.42 ± 2.25% in distilled deionized water, ground, lake, river, and wastewater, respectively using Cu electrodes. Removal of ATZ was higher (84.52 ± 1.04%) in the presence of microplastics as they served as coagulant aids. The effect of polarity reversal was examined to reduce anode fouling during electrolysis and longer intervals of 10 min yielded higher removal efficiencies than intervals of 5 min or no polarity reversal. This research found that EC is an economical and sustainable solution to pesticide and MP pollution in aquatic ecosystems. This study advances Sustainable Development Goals (SDG) by enhancing clean water access (SDG 6), promoting health through pollutant removal (SDG 3), and using solar power as an energy source to run the reactor is aligned with SDG 7.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 4","pages":" 942-958"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00809j","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging contaminants, particularly pesticides and microplastics (MPs), pose a substantial risk to both human beings and ecosystems. While atrazine (ATZ) and MPs have been found to coexist in environmental media, limited studies have investigated their combined interaction and removal. Moreover, the application of electrocoagulation (EC) for simultaneously addressing these contaminants remains unexplored. This study was conducted with ATZ concentration (3–20 mg L−1), where the effects of electrode materials, current density, pH, and supporting electrolyte concentration were analysed. In general, the removal kinetics for ATZ were best described by the first-order model for both Al and Cu electrodes. The ATZ removal efficiencies were evaluated in real water matrices and found to be 79.85 ± 1.03, 75.92 ± 1.25, 70.58 ± 1.49, 68.09 ± 1.10, and 64.42 ± 2.25% in distilled deionized water, ground, lake, river, and wastewater, respectively using Cu electrodes. Removal of ATZ was higher (84.52 ± 1.04%) in the presence of microplastics as they served as coagulant aids. The effect of polarity reversal was examined to reduce anode fouling during electrolysis and longer intervals of 10 min yielded higher removal efficiencies than intervals of 5 min or no polarity reversal. This research found that EC is an economical and sustainable solution to pesticide and MP pollution in aquatic ecosystems. This study advances Sustainable Development Goals (SDG) by enhancing clean water access (SDG 6), promoting health through pollutant removal (SDG 3), and using solar power as an energy source to run the reactor is aligned with SDG 7.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信