POMDP-Driven Cognitive Massive MIMO Radar: Joint Target Detection-Tracking in Unknown Disturbances

Imad Bouhou;Stefano Fortunati;Leila Gharsalli;Alexandre Renaux
{"title":"POMDP-Driven Cognitive Massive MIMO Radar: Joint Target Detection-Tracking in Unknown Disturbances","authors":"Imad Bouhou;Stefano Fortunati;Leila Gharsalli;Alexandre Renaux","doi":"10.1109/TRS.2025.3549239","DOIUrl":null,"url":null,"abstract":"The joint detection and tracking of a moving target embedded in an unknown disturbance represents a key feature that motivates the development of the cognitive radar paradigm. Building upon recent advancements in robust target detection with multiple-input multiple-output (MIMO) radars, this work explores the application of a partially observable Markov decision process (POMDP) framework to enhance the tracking and detection tasks in a statistically unknown environment. In the POMDP setup, the radar system is considered as an intelligent agent that continuously senses the surrounding environment, optimizing its actions to maximize the probability of detection <inline-formula> <tex-math>$(P_{\\!D})$ </tex-math></inline-formula> and improve the target position and velocity estimation, all this while keeping a constant probability of false alarm <inline-formula> <tex-math>$(P_{\\text {FA}})$ </tex-math></inline-formula>. The proposed approach employs an online algorithm that does not require any a priori knowledge of the noise statistics, and it relies on a much more general observation model than the traditional range-azimuth-elevation model employed by conventional tracking algorithms. Simulation results clearly show substantial performance improvement of the POMDP-based algorithm compared to the state-action-reward-state-action (SARSA)-based one that has been recently investigated in the context of massive MIMO (MMIMO) radar systems.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"539-548"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10916797/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The joint detection and tracking of a moving target embedded in an unknown disturbance represents a key feature that motivates the development of the cognitive radar paradigm. Building upon recent advancements in robust target detection with multiple-input multiple-output (MIMO) radars, this work explores the application of a partially observable Markov decision process (POMDP) framework to enhance the tracking and detection tasks in a statistically unknown environment. In the POMDP setup, the radar system is considered as an intelligent agent that continuously senses the surrounding environment, optimizing its actions to maximize the probability of detection $(P_{\!D})$ and improve the target position and velocity estimation, all this while keeping a constant probability of false alarm $(P_{\text {FA}})$ . The proposed approach employs an online algorithm that does not require any a priori knowledge of the noise statistics, and it relies on a much more general observation model than the traditional range-azimuth-elevation model employed by conventional tracking algorithms. Simulation results clearly show substantial performance improvement of the POMDP-based algorithm compared to the state-action-reward-state-action (SARSA)-based one that has been recently investigated in the context of massive MIMO (MMIMO) radar systems.
pomdp驱动的认知大规模MIMO雷达:未知干扰下的联合目标探测与跟踪
对嵌入在未知干扰中的运动目标的联合检测和跟踪是推动认知雷达范式发展的一个关键特征。基于多输入多输出(MIMO)雷达鲁棒目标检测的最新进展,本研究探索了部分可观察马尔可夫决策过程(POMDP)框架的应用,以增强统计未知环境中的跟踪和检测任务。在POMDP设置中,雷达系统被认为是一个不断感知周围环境的智能代理,优化其动作以最大化检测概率$(P_{\!D})$,并改进目标位置和速度估计,同时保持恒定的假警报概率$(P_{\text {FA}})$。该方法采用了一种在线算法,不需要任何先验的噪声统计知识,并且它依赖于比传统跟踪算法所采用的传统距离-方位-高程模型更通用的观测模型。仿真结果清楚地表明,与最近在大规模MIMO (MMIMO)雷达系统中研究的基于状态-动作-奖励-状态-动作(SARSA)的算法相比,基于pomdp的算法的性能有了实质性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信