Learning-Aided Collaborative Optimization of Power, Hydrogen, and Transportation Networks

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sheng Chen;Hao Cheng;Si Lv;Zhinong Wei;Peiyue Li;Jiahui Jin
{"title":"Learning-Aided Collaborative Optimization of Power, Hydrogen, and Transportation Networks","authors":"Sheng Chen;Hao Cheng;Si Lv;Zhinong Wei;Peiyue Li;Jiahui Jin","doi":"10.35833/MPCE.2024.000563","DOIUrl":null,"url":null,"abstract":"The gradual replacement of gasoline vehicles with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) in recent years has provided a growing incentive for the collaborative optimization of power distribution network (PDN), urban transportation network (UTN), and hydrogen distribution network (HDN). However, an appropriate collaborative optimization framework that addresses the prevalent privacy concerns has yet to be developed, and a sufficient pool of system operators that can competently operate all three networks has yet to be obtained. This study proposes a differentiated taxation-subsidy mechanism for UTNs, utilizing congestion tolls and subsidies to guide the independent traffic flow of EVs and HFCVs. An integrated optimization model for this power-hydrogen-transportation network is established by treating these vehicles and the electrolysis equipment as coupling bridges. We then develop a learning-aided decoupling approach to determine the values of the coupling variables acting among the three networks to ensure the economic feasibility of collaborative optimization. This approach effectively decouples the network, allowing it to operate and be optimized independently. The results for a numerical simulation of a coupled system composed of a IEEE 33-node power network, 13-node Nguyen-Dupuis transportation network, and 20-node HDN demonstrate that the proposed learning-aided approach provides nearly equivalent dispatching results as those derived from direct solution of the physical models of the coupled system, while significantly improving the computational efficiency.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"475-487"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10770093/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The gradual replacement of gasoline vehicles with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) in recent years has provided a growing incentive for the collaborative optimization of power distribution network (PDN), urban transportation network (UTN), and hydrogen distribution network (HDN). However, an appropriate collaborative optimization framework that addresses the prevalent privacy concerns has yet to be developed, and a sufficient pool of system operators that can competently operate all three networks has yet to be obtained. This study proposes a differentiated taxation-subsidy mechanism for UTNs, utilizing congestion tolls and subsidies to guide the independent traffic flow of EVs and HFCVs. An integrated optimization model for this power-hydrogen-transportation network is established by treating these vehicles and the electrolysis equipment as coupling bridges. We then develop a learning-aided decoupling approach to determine the values of the coupling variables acting among the three networks to ensure the economic feasibility of collaborative optimization. This approach effectively decouples the network, allowing it to operate and be optimized independently. The results for a numerical simulation of a coupled system composed of a IEEE 33-node power network, 13-node Nguyen-Dupuis transportation network, and 20-node HDN demonstrate that the proposed learning-aided approach provides nearly equivalent dispatching results as those derived from direct solution of the physical models of the coupled system, while significantly improving the computational efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信