{"title":"DNGG: Medical Image Lossless Encryption via Deep Network Guided Generative","authors":"Lin Fan;Meng Li;Zhenting Hu;Yuan Hong;Dexing Kong","doi":"10.1109/LSP.2025.3552528","DOIUrl":null,"url":null,"abstract":"Ensuring the security and integrity of medical images is crucial for telemedicine. Recently, deep learning-based image encryption techniques have significantly improved data transmission security. However, the unpredictability of complex models may lead to damage during image reconstruction, thereby negatively impacting medical diagnostics. To address this issue, we propose a lossless encryption algorithm for medical images, which is based on a guided image generative neural network. Initially, we designed a guided image generation network. Subsequently, we train a generator using random keys to produce a key map. This key map then guides the encryption of the secret image through a bitwise XOR (bit-XOR) algorithm, effectively merging the secret image with the key map. During the decryption process, the original image can be restored losslessly by using a key map generated from a random key. The experimental results show that the encryption algorithm greatly ensures the security of data and shows strong anti-attack ability.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1331-1335"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10930820/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring the security and integrity of medical images is crucial for telemedicine. Recently, deep learning-based image encryption techniques have significantly improved data transmission security. However, the unpredictability of complex models may lead to damage during image reconstruction, thereby negatively impacting medical diagnostics. To address this issue, we propose a lossless encryption algorithm for medical images, which is based on a guided image generative neural network. Initially, we designed a guided image generation network. Subsequently, we train a generator using random keys to produce a key map. This key map then guides the encryption of the secret image through a bitwise XOR (bit-XOR) algorithm, effectively merging the secret image with the key map. During the decryption process, the original image can be restored losslessly by using a key map generated from a random key. The experimental results show that the encryption algorithm greatly ensures the security of data and shows strong anti-attack ability.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.