A Flexibility Scheduling Method for Distribution Network Based on Robust Graph DRL Against State Adversarial Attacks

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ziyang Yin;Shouxiang Wang;Qianyu Zhao
{"title":"A Flexibility Scheduling Method for Distribution Network Based on Robust Graph DRL Against State Adversarial Attacks","authors":"Ziyang Yin;Shouxiang Wang;Qianyu Zhao","doi":"10.35833/MPCE.2024.000409","DOIUrl":null,"url":null,"abstract":"In the context of large-scale photovoltaic integration, flexibility scheduling is essential to ensure the secure and efficient operation of distribution networks (DNs). Recently, deep reinforcement learning (DRL) has been widely applied to scheduling problems. However, most methods neglect the vulnerability of DRL to state adversarial attacks such as load redistribution attacks, significantly undermining its security and reliability. To this end, a flexibility scheduling method is proposed based on robust graph DRL (RoGDRL). A flexibility gain improvement model considering temperature-dependent resistance is first proposed, which considers weather factors as additional variables to enhance the precision of flexibility analysis. Based on this, a state-adversarial two-player zero-sum Markov game (SA-TZMG) model is proposed, which converts the robust DRL scheduling problem into a Nash equilibrium problem. The proposed SA-TZMG model considers the physical constraints of state attacks that guarantee the maximal flexibility gain for the defender when confronted with the most sophisticated and stealthy attacker. A two-stage RoGDRL algorithm is proposed, which introduces the graph sample and aggregate (Graph-SAGE) driven soft actor-critic to capture the complex feature about the neighbors of nodes and their properties via inductive learning, thereby solving the Nash equilibrium policies more efficiently. Simulations based on the modified IEEE 123-bus system demonstrates the efficacy of the proposed method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"514-526"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10755058/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of large-scale photovoltaic integration, flexibility scheduling is essential to ensure the secure and efficient operation of distribution networks (DNs). Recently, deep reinforcement learning (DRL) has been widely applied to scheduling problems. However, most methods neglect the vulnerability of DRL to state adversarial attacks such as load redistribution attacks, significantly undermining its security and reliability. To this end, a flexibility scheduling method is proposed based on robust graph DRL (RoGDRL). A flexibility gain improvement model considering temperature-dependent resistance is first proposed, which considers weather factors as additional variables to enhance the precision of flexibility analysis. Based on this, a state-adversarial two-player zero-sum Markov game (SA-TZMG) model is proposed, which converts the robust DRL scheduling problem into a Nash equilibrium problem. The proposed SA-TZMG model considers the physical constraints of state attacks that guarantee the maximal flexibility gain for the defender when confronted with the most sophisticated and stealthy attacker. A two-stage RoGDRL algorithm is proposed, which introduces the graph sample and aggregate (Graph-SAGE) driven soft actor-critic to capture the complex feature about the neighbors of nodes and their properties via inductive learning, thereby solving the Nash equilibrium policies more efficiently. Simulations based on the modified IEEE 123-bus system demonstrates the efficacy of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信