How to Relieve Distribution Shifts in Semantic Segmentation for Off-Road Environments

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Ji-Hoon Hwang;Daeyoung Kim;Hyung-Suk Yoon;Dong-Wook Kim;Seung-Woo Seo
{"title":"How to Relieve Distribution Shifts in Semantic Segmentation for Off-Road Environments","authors":"Ji-Hoon Hwang;Daeyoung Kim;Hyung-Suk Yoon;Dong-Wook Kim;Seung-Woo Seo","doi":"10.1109/LRA.2025.3551536","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is crucial for autonomous navigation in off-road environments, enabling precise classification of surroundings to identify traversable regions. However, distinctive factors inherent to off-road conditions, such as source-target domain discrepancies and sensor corruption from rough terrain, can result in distribution shifts that alter the data differently from the trained conditions. This often leads to inaccurate semantic label predictions and subsequent failures in navigation tasks. To address this, we propose ST-Seg, a novel framework that expands the source distribution through style expansion (SE) and texture regularization (TR). Unlike prior methods that implicitly apply generalization within a fixed source distribution, ST-Seg offers an intuitive approach for distribution shift. Specifically, SE broadens domain coverage by generating diverse realistic styles, augmenting the limited style information of the source domain. TR stabilizes local texture representation affected by style-augmented learning through a deep texture manifold. Experiments across various distribution-shifted target domains demonstrate the effectiveness of ST-Seg, with substantial improvements over existing methods. These results highlight the robustness of ST-Seg, enhancing the real-world applicability of semantic segmentation for off-road navigation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 5","pages":"4500-4507"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10925898/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic segmentation is crucial for autonomous navigation in off-road environments, enabling precise classification of surroundings to identify traversable regions. However, distinctive factors inherent to off-road conditions, such as source-target domain discrepancies and sensor corruption from rough terrain, can result in distribution shifts that alter the data differently from the trained conditions. This often leads to inaccurate semantic label predictions and subsequent failures in navigation tasks. To address this, we propose ST-Seg, a novel framework that expands the source distribution through style expansion (SE) and texture regularization (TR). Unlike prior methods that implicitly apply generalization within a fixed source distribution, ST-Seg offers an intuitive approach for distribution shift. Specifically, SE broadens domain coverage by generating diverse realistic styles, augmenting the limited style information of the source domain. TR stabilizes local texture representation affected by style-augmented learning through a deep texture manifold. Experiments across various distribution-shifted target domains demonstrate the effectiveness of ST-Seg, with substantial improvements over existing methods. These results highlight the robustness of ST-Seg, enhancing the real-world applicability of semantic segmentation for off-road navigation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信