{"title":"A Continuous Operating Envelope for Managing Intra-Interval Fluctuations: Modeling and Solution","authors":"Menghan Zhang;Zhifang Yang;Juan Yu;Wenyuan Li","doi":"10.35833/MPCE.2024.000636","DOIUrl":null,"url":null,"abstract":"Maintaining a continuous power balance is crucial for ensuring operational feasibility in power systems. However, due to forecasting difficulties and computational limitations, economic dispatch often relies on discrete interval horizons, which fail to guarantee feasibility within each interval. This paper introduces the concept of a continuous operating envelope for managing intra-interval fluctuations, delineating the range within which fluctuations remain manageable. We propose a parametric programming model to construct the envelope, represented as a polytope that accounts for both timescale and fluctuation dimensions. To address the computational challenges inherent in the parametric programming model, we develop a fast solution method to provide an approximated polytope. The approximated polytope, initially derived from lower-dimensional projections, represents a subset of the exact polytope that ensures operational feasibility. Additionally, we apply a polytope expansion strategy in the original dimensions to refine the approximated polytope, bringing the approximation closer to the exact polytope. Case studies on an illustrative 5-bus and a utility-scale 661-bus system demonstrate that the method effectively and stably provides a continuous operating envelope, particularly for high-dimensional problems.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"426-438"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10770094/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining a continuous power balance is crucial for ensuring operational feasibility in power systems. However, due to forecasting difficulties and computational limitations, economic dispatch often relies on discrete interval horizons, which fail to guarantee feasibility within each interval. This paper introduces the concept of a continuous operating envelope for managing intra-interval fluctuations, delineating the range within which fluctuations remain manageable. We propose a parametric programming model to construct the envelope, represented as a polytope that accounts for both timescale and fluctuation dimensions. To address the computational challenges inherent in the parametric programming model, we develop a fast solution method to provide an approximated polytope. The approximated polytope, initially derived from lower-dimensional projections, represents a subset of the exact polytope that ensures operational feasibility. Additionally, we apply a polytope expansion strategy in the original dimensions to refine the approximated polytope, bringing the approximation closer to the exact polytope. Case studies on an illustrative 5-bus and a utility-scale 661-bus system demonstrate that the method effectively and stably provides a continuous operating envelope, particularly for high-dimensional problems.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.