{"title":"Dynamic Nonlinear Droop-Based Fast Frequency Regulation for Power Systems with Flexible Resources Using Meta-Reinforcement Learning Approach","authors":"Yuxin Ma;Zechun Hu;Yonghua Song","doi":"10.35833/MPCE.2024.000062","DOIUrl":null,"url":null,"abstract":"The increasing penetration of renewable energy resources and reduced system inertia pose risks to frequency security of power systems, necessitating the development of fast frequency regulation (FFR) methods using flexible resources. However, developing effective FFR policies is challenging because different power system operating conditions require distinct regulation logics. Traditional fixed-coefficient linear droop-based control methods are suboptimal for managing the diverse conditions encountered. This paper proposes a dynamic nonlinear <tex>${P}-{f}$</tex> droop-based FFR method using a newly established meta-reinforcement learning (meta-RL) approach to enhance control adaptability while ensuring grid stability. First, we model the optimal FFR problem under various operating conditions as a set of Markov decision processes and accordingly formulate the frequency stability-constrained meta-RL problem. To address this, we then construct a novel hierarchical neural network (HNN) structure that incorporates a theoretical frequency stability guarantee, thereby converting the constrained meta-RL problem into a more tractable form. Finally, we propose a two-stage algorithm that leverages the inherent characteristics of the problem, achieving enhanced optimality in solving the HNN-based meta-RL problem. Simulations validate that the proposed FFR method shows superior adaptability across different operating conditions, and achieves better trade-offs between regulation performance and cost than benchmarks.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"379-390"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10707106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10707106/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing penetration of renewable energy resources and reduced system inertia pose risks to frequency security of power systems, necessitating the development of fast frequency regulation (FFR) methods using flexible resources. However, developing effective FFR policies is challenging because different power system operating conditions require distinct regulation logics. Traditional fixed-coefficient linear droop-based control methods are suboptimal for managing the diverse conditions encountered. This paper proposes a dynamic nonlinear ${P}-{f}$ droop-based FFR method using a newly established meta-reinforcement learning (meta-RL) approach to enhance control adaptability while ensuring grid stability. First, we model the optimal FFR problem under various operating conditions as a set of Markov decision processes and accordingly formulate the frequency stability-constrained meta-RL problem. To address this, we then construct a novel hierarchical neural network (HNN) structure that incorporates a theoretical frequency stability guarantee, thereby converting the constrained meta-RL problem into a more tractable form. Finally, we propose a two-stage algorithm that leverages the inherent characteristics of the problem, achieving enhanced optimality in solving the HNN-based meta-RL problem. Simulations validate that the proposed FFR method shows superior adaptability across different operating conditions, and achieves better trade-offs between regulation performance and cost than benchmarks.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.