Md Helal Uddin , Jinnath Rehana Ritu , Douglas P. Chivers , Som Niyogi
{"title":"Corrigendum to ‘Neurodevelopmental and behavioural effects of waterborne selenite in larval zebrafish (Danio rerio)’ [Environ. Res. 273 (2025) 121240]","authors":"Md Helal Uddin , Jinnath Rehana Ritu , Douglas P. Chivers , Som Niyogi","doi":"10.1016/j.envres.2025.121463","DOIUrl":null,"url":null,"abstract":"<div><div>Selenium (Se) is an essential element that becomes highly toxic to fish at elevated exposure levels. Although the neuro-behavioural effects of organic Se are well documented in adult fish, the effects of inorganic Se (selenite) on neurodevelopment and behaviour, particularly in early life stages, remain poorly understood. In this study, zebrafish embryos were exposed to different environmentally relevant concentrations of waterborne Se (0 (control), 10, 50, 100 μg/L; as selenite) from 4 hours post-fertilization to 30 days post-fertilization. We evaluated neurodevelopmental and behavioural outcomes, along with oxidative stress as a potential mechanism of selenite neurotoxicity. Fish larvae exposed to higher Se concentrations (50 and 100 μg/L) exhibited significant behavioural impairments, including reduced thigmotaxis and reflexive movement, spent significantly less time (60 %) near their conspecifics, and lower exploratory response (1.5 fold) to the novel object. These behavioural deficits were associated with elevated oxidative stress, as indicated by increased (5.4 fold) DCF-DA fluorescence intensity and dysregulation (0.6–6.4 fold change) of key antioxidant genes. Additionally, selenite exposure led to increased apoptotic cell death (p < 0.001), and reduced length (16 %) and weight (33–47 %) of zebrafish larvae in 50 and 100 μg/L Se exposure groups compared to the control group. Neurodevelopmental disruptions were evident through altered expression of dopaminergic (<em>mao, th1, otpa</em>; all p < 0.05) and serotonergic (<em>tph2, pet1, 5ht2c</em>; all p < 0.05) pathway genes, critical regulators of behaviour in fishes. Overall, our findings suggest that selenite-induced oxidative stress and neurodevelopmental gene dysregulation contribute to the observed behavioural impairments in developing zebrafish, highlighting the potential risks of Se exposure during early life stages.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"274 ","pages":"Article 121463"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125007145","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium (Se) is an essential element that becomes highly toxic to fish at elevated exposure levels. Although the neuro-behavioural effects of organic Se are well documented in adult fish, the effects of inorganic Se (selenite) on neurodevelopment and behaviour, particularly in early life stages, remain poorly understood. In this study, zebrafish embryos were exposed to different environmentally relevant concentrations of waterborne Se (0 (control), 10, 50, 100 μg/L; as selenite) from 4 hours post-fertilization to 30 days post-fertilization. We evaluated neurodevelopmental and behavioural outcomes, along with oxidative stress as a potential mechanism of selenite neurotoxicity. Fish larvae exposed to higher Se concentrations (50 and 100 μg/L) exhibited significant behavioural impairments, including reduced thigmotaxis and reflexive movement, spent significantly less time (60 %) near their conspecifics, and lower exploratory response (1.5 fold) to the novel object. These behavioural deficits were associated with elevated oxidative stress, as indicated by increased (5.4 fold) DCF-DA fluorescence intensity and dysregulation (0.6–6.4 fold change) of key antioxidant genes. Additionally, selenite exposure led to increased apoptotic cell death (p < 0.001), and reduced length (16 %) and weight (33–47 %) of zebrafish larvae in 50 and 100 μg/L Se exposure groups compared to the control group. Neurodevelopmental disruptions were evident through altered expression of dopaminergic (mao, th1, otpa; all p < 0.05) and serotonergic (tph2, pet1, 5ht2c; all p < 0.05) pathway genes, critical regulators of behaviour in fishes. Overall, our findings suggest that selenite-induced oxidative stress and neurodevelopmental gene dysregulation contribute to the observed behavioural impairments in developing zebrafish, highlighting the potential risks of Se exposure during early life stages.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.