Qinglu Li , Xiaojie Niu , Zhaoyi Pan , Jinghua Zhang
{"title":"Nonlinear buckling and post-buckling of multilayered piezoelectric graded porous circular nanoplates considering of surface/interface effects","authors":"Qinglu Li , Xiaojie Niu , Zhaoyi Pan , Jinghua Zhang","doi":"10.1016/j.tws.2025.113236","DOIUrl":null,"url":null,"abstract":"<div><div>The special characteristics of surfaces and interfaces significantly influence the durability and performance of materials. For the first time, this article introduces surface and interface effects into Kirchhoff thin plate theory to study the buckling and nonlinear post-buckling behavior of multilayer piezoelectric porous nanostructures. The bulk structure is a graded porous material and pores are embedded in the plate in two cosine forms of non-uniform porosity distribution with a pair of piezoelectric layers surface bonded on both sides of the bulk surface. Then, classical plate theory, combined with minimum potential energy principle, is utilized to derive the post-buckling governing equation coupling the piezoelectric effect. A shooting method is presented to obtain the buckling and post-buckling numerical solutions. The numerical results obtained reveal that the surface and interface effects, along with the applied potential, significantly influence the stability of multilayer piezoelectric graded porous circular nanoplates to varying extents.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113236"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125003301","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The special characteristics of surfaces and interfaces significantly influence the durability and performance of materials. For the first time, this article introduces surface and interface effects into Kirchhoff thin plate theory to study the buckling and nonlinear post-buckling behavior of multilayer piezoelectric porous nanostructures. The bulk structure is a graded porous material and pores are embedded in the plate in two cosine forms of non-uniform porosity distribution with a pair of piezoelectric layers surface bonded on both sides of the bulk surface. Then, classical plate theory, combined with minimum potential energy principle, is utilized to derive the post-buckling governing equation coupling the piezoelectric effect. A shooting method is presented to obtain the buckling and post-buckling numerical solutions. The numerical results obtained reveal that the surface and interface effects, along with the applied potential, significantly influence the stability of multilayer piezoelectric graded porous circular nanoplates to varying extents.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.