{"title":"Experimental study of non-reinforced thin-walled concrete-filled double skin steel tubular bridge columns with socket connection","authors":"Jiang Yi , Fuxiang Zhu , Wenjing Xu","doi":"10.1016/j.tws.2025.113231","DOIUrl":null,"url":null,"abstract":"<div><div>A novel non-reinforced thin-walled concrete-filled double skin steel tubular (NRTW-CFDST) structure with a socket connection is proposed for bridge columns. The advantages of this column include the absence of reinforcement, elimination of formwork installation and removal, and ease of customization, making it ideal for the rapid construction of short-line bridge piers with individualized size and height. Through experiments and finite element simulation analysis, the bending capacity and seismic performance of connection joints are investigated, and design recommendations for the novel column are provided. Experimental results indicate that the failure mode of the column is characterized by concrete crushing due to bending at the plastic hinge, and the full hysteresis curves indicate its good seismic performance. Importantly, the joints remained undamaged, demonstrating a significant reserve of bending capacity. For optimal performance, it is recommended to use a socket depth of 1.0 D to 1.2 D (D is the column section width) and a 6 mm thick base end plate. This configuration ensures adequate bending stiffness of the pier structure and a reasonable failure location at the plastic hinge.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113231"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125003258","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel non-reinforced thin-walled concrete-filled double skin steel tubular (NRTW-CFDST) structure with a socket connection is proposed for bridge columns. The advantages of this column include the absence of reinforcement, elimination of formwork installation and removal, and ease of customization, making it ideal for the rapid construction of short-line bridge piers with individualized size and height. Through experiments and finite element simulation analysis, the bending capacity and seismic performance of connection joints are investigated, and design recommendations for the novel column are provided. Experimental results indicate that the failure mode of the column is characterized by concrete crushing due to bending at the plastic hinge, and the full hysteresis curves indicate its good seismic performance. Importantly, the joints remained undamaged, demonstrating a significant reserve of bending capacity. For optimal performance, it is recommended to use a socket depth of 1.0 D to 1.2 D (D is the column section width) and a 6 mm thick base end plate. This configuration ensures adequate bending stiffness of the pier structure and a reasonable failure location at the plastic hinge.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.