A concept of volume wireless receive-only coil for 1.5T MRI

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Aleksandr Fedotov , Pavel Tikhonov , Viktor Puchnin , Ekaterina Brui , Anatoliy Levchuk , Ayshat Karaeva , Alena Shchelokova , Georgiy Solomakha , Anna Hurshkainen
{"title":"A concept of volume wireless receive-only coil for 1.5T MRI","authors":"Aleksandr Fedotov ,&nbsp;Pavel Tikhonov ,&nbsp;Viktor Puchnin ,&nbsp;Ekaterina Brui ,&nbsp;Anatoliy Levchuk ,&nbsp;Ayshat Karaeva ,&nbsp;Alena Shchelokova ,&nbsp;Georgiy Solomakha ,&nbsp;Anna Hurshkainen","doi":"10.1016/j.jmr.2025.107841","DOIUrl":null,"url":null,"abstract":"<div><div>Wireless radio frequency coils offer an alternative to conventional cable-connected coils due to their compatibility with multiple vendor MRI systems and reduced electromagnetic interaction with the environment of the MRI scanner. However, wireless coils being inductively coupled with a transceiver body coil require manual input power calibration due to the significant increase of a body coil transmit efficiency locally in the region of interest and disturbance of <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> homogeneity complicating routine scanning procedures. This study aims to implement the concept of a wireless receive-only coil for female breast MRI at 1.5T. The approach combines the advantages of wireless coils to increase signal to noise ratio of transceiver body coil in the target region of interest and the ability to perform the automatic reference voltage calibration.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107841"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000138","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless radio frequency coils offer an alternative to conventional cable-connected coils due to their compatibility with multiple vendor MRI systems and reduced electromagnetic interaction with the environment of the MRI scanner. However, wireless coils being inductively coupled with a transceiver body coil require manual input power calibration due to the significant increase of a body coil transmit efficiency locally in the region of interest and disturbance of B1+ homogeneity complicating routine scanning procedures. This study aims to implement the concept of a wireless receive-only coil for female breast MRI at 1.5T. The approach combines the advantages of wireless coils to increase signal to noise ratio of transceiver body coil in the target region of interest and the ability to perform the automatic reference voltage calibration.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信