{"title":"Materials advancements in electrochemically mediated carbon capture","authors":"Andong Liu, Yayuan Liu","doi":"10.1016/j.coelec.2025.101680","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemically mediated carbon capture (EMCC) has emerged as a promising technology for mitigating global warming, offering energy efficiency, environmental sustainability, and modular design flexibility. Despite its potential, the widespread adoption of EMCC systems faces challenges. Intrinsic issues, such as parasitic reactions and the limited reversibility of redox-active species, contribute to performance degradation over repeated carbon capture-release cycles. Additionally, scaling up bench-scale EMCC setups for industrial applications demands substantial efforts to overcome critical engineering bottlenecks. This review focuses on EMCC systems based on reversible mechanisms, highlighting recent advancements in material design from molecular to process levels to address the aforementioned challenges. We also provide perspectives on advancing the field through deeper fundamental understanding and the establishment of standardized evaluation protocols, aiming to accelerate the development and deployment of EMCC technologies at scale.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101680"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000390","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemically mediated carbon capture (EMCC) has emerged as a promising technology for mitigating global warming, offering energy efficiency, environmental sustainability, and modular design flexibility. Despite its potential, the widespread adoption of EMCC systems faces challenges. Intrinsic issues, such as parasitic reactions and the limited reversibility of redox-active species, contribute to performance degradation over repeated carbon capture-release cycles. Additionally, scaling up bench-scale EMCC setups for industrial applications demands substantial efforts to overcome critical engineering bottlenecks. This review focuses on EMCC systems based on reversible mechanisms, highlighting recent advancements in material design from molecular to process levels to address the aforementioned challenges. We also provide perspectives on advancing the field through deeper fundamental understanding and the establishment of standardized evaluation protocols, aiming to accelerate the development and deployment of EMCC technologies at scale.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •