Impact of particle breakage on the carbonation of argon oxygen decarburization slag - limitations and energy assessment

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nina Miladinović , Luka Ceyssens , Giuseppe Granata , Tom Van Gerven
{"title":"Impact of particle breakage on the carbonation of argon oxygen decarburization slag - limitations and energy assessment","authors":"Nina Miladinović ,&nbsp;Luka Ceyssens ,&nbsp;Giuseppe Granata ,&nbsp;Tom Van Gerven","doi":"10.1016/j.jcou.2025.103073","DOIUrl":null,"url":null,"abstract":"<div><div>Disposing waste from the steel-making industry and the ongoing rise in global carbon dioxide emissions represent significant challenges to overcome. Carbonation of steel slags, the main waste material formed in steelmaking processes, is one of the possible solutions. In this research, three different kinds of mills are compared in order to most effectively approach the carbonation of argon oxygen decarburization (AOD) steel slag while simultaneously milled. Using breakage potential as a parameter for quantitative comparison, it is shown that the planetary ball mill is noticeably performing better than the vibratory mill and the McCrone mill – up to 39 % in terms of breakage of particles. The breakage potential correlates well with the carbonation rate at all three examined speeds (200 rpm, 500 rpm and 800 rpm) in the planetary ball mill. However, it is estimated that energy up to 120 kJ/g is used for the breakage of particles. Energy applied above this threshold contributes mainly to the agglomeration, but at different rates depending on the implemented speed. This difference is due to the varying contribution of two influencing parameters during simultaneous carbonation and milling - the presence of water and the number of collisions of the grinding balls with the AOD steel slag. The present work gives insights into the breakage of steel slag particles, their carbonation potential and limitations for achieving higher carbonation rates as well as predicted energy usage to obtain these processes.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"95 ","pages":"Article 103073"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000575","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Disposing waste from the steel-making industry and the ongoing rise in global carbon dioxide emissions represent significant challenges to overcome. Carbonation of steel slags, the main waste material formed in steelmaking processes, is one of the possible solutions. In this research, three different kinds of mills are compared in order to most effectively approach the carbonation of argon oxygen decarburization (AOD) steel slag while simultaneously milled. Using breakage potential as a parameter for quantitative comparison, it is shown that the planetary ball mill is noticeably performing better than the vibratory mill and the McCrone mill – up to 39 % in terms of breakage of particles. The breakage potential correlates well with the carbonation rate at all three examined speeds (200 rpm, 500 rpm and 800 rpm) in the planetary ball mill. However, it is estimated that energy up to 120 kJ/g is used for the breakage of particles. Energy applied above this threshold contributes mainly to the agglomeration, but at different rates depending on the implemented speed. This difference is due to the varying contribution of two influencing parameters during simultaneous carbonation and milling - the presence of water and the number of collisions of the grinding balls with the AOD steel slag. The present work gives insights into the breakage of steel slag particles, their carbonation potential and limitations for achieving higher carbonation rates as well as predicted energy usage to obtain these processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信