A facile preparation strategy for multifunctional hydrogel films with adjustable performance in food preservation

IF 8.5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Chao Yin , Jun Zheng , Yufan Yang , Xianwen Song , Miao Cui , Rujuan Shen , Yi Zhang
{"title":"A facile preparation strategy for multifunctional hydrogel films with adjustable performance in food preservation","authors":"Chao Yin ,&nbsp;Jun Zheng ,&nbsp;Yufan Yang ,&nbsp;Xianwen Song ,&nbsp;Miao Cui ,&nbsp;Rujuan Shen ,&nbsp;Yi Zhang","doi":"10.1016/j.fpsl.2025.101471","DOIUrl":null,"url":null,"abstract":"<div><div>Plant polyphenols represent valuable additives for food packaging; however, their poor hydrophilicity necessitates complex pre-treatments. In this study, we propose a simple and eco-friendly strategy for the direct incorporation of hydrophobic polyphenols into packaging films. Using carboxymethyl chitosan and oxidized carrageenan as substrates, we successfully introduced hydrophobic polyphenols into multifunctional hydrogel films through borate ester bonds. The mechanical strength of these films was further enhanced by schiff base bonds. The prepared hydrogel films exhibited antibacterial rates exceeding 98 % against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>, and demonstrated excellent antioxidant and UV shielding properties. As the oxidation degree of carrageenan increased, the water vapor permeability rate of the hydrogel films decreased from 1.34 × 10⁻¹ ⁰ g·m⁻¹ ·s⁻¹ ·Pa⁻¹ to 3.13 × 10⁻¹ ¹ g·m⁻¹ ·s⁻¹ ·Pa⁻¹ , while the oxygen permeability rate decreased from 40.61 meq/kg to 20.04 meq/kg. This design effectively mitigates the deterioration of fruits and vegetables caused by dehydration and oxidation. Furthermore, the hydrogel films containing carrageenan with a medium oxidation degree exhibited superior mechanical properties, with tensile strength increasing by 4.8-fold and the ability to bear a load of 200 g. The banana preservation experiments demonstrated that hydrogel films can effectively delay the deterioration of bananas. Notably, the film exhibited excellent biodegradability, degrading by 90 % in soil within 60 days, underscoring its significant potential for developing functional and environmentally friendly food packaging systems.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"49 ","pages":"Article 101471"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289425000419","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant polyphenols represent valuable additives for food packaging; however, their poor hydrophilicity necessitates complex pre-treatments. In this study, we propose a simple and eco-friendly strategy for the direct incorporation of hydrophobic polyphenols into packaging films. Using carboxymethyl chitosan and oxidized carrageenan as substrates, we successfully introduced hydrophobic polyphenols into multifunctional hydrogel films through borate ester bonds. The mechanical strength of these films was further enhanced by schiff base bonds. The prepared hydrogel films exhibited antibacterial rates exceeding 98 % against Escherichia coli and Staphylococcus aureus, and demonstrated excellent antioxidant and UV shielding properties. As the oxidation degree of carrageenan increased, the water vapor permeability rate of the hydrogel films decreased from 1.34 × 10⁻¹ ⁰ g·m⁻¹ ·s⁻¹ ·Pa⁻¹ to 3.13 × 10⁻¹ ¹ g·m⁻¹ ·s⁻¹ ·Pa⁻¹ , while the oxygen permeability rate decreased from 40.61 meq/kg to 20.04 meq/kg. This design effectively mitigates the deterioration of fruits and vegetables caused by dehydration and oxidation. Furthermore, the hydrogel films containing carrageenan with a medium oxidation degree exhibited superior mechanical properties, with tensile strength increasing by 4.8-fold and the ability to bear a load of 200 g. The banana preservation experiments demonstrated that hydrogel films can effectively delay the deterioration of bananas. Notably, the film exhibited excellent biodegradability, degrading by 90 % in soil within 60 days, underscoring its significant potential for developing functional and environmentally friendly food packaging systems.
一种制备食品保鲜性能可调多功能水凝胶膜的简便方法
植物多酚是有价值的食品包装添加剂;然而,由于其亲水性差,需要进行复杂的预处理。在这项研究中,我们提出了一种简单而环保的策略,将疏水多酚直接掺入包装薄膜中。以羧甲基壳聚糖和氧化卡拉胶为底物,通过硼酸酯键成功地将疏水多酚引入多功能水凝胶膜中。席夫碱键进一步提高了薄膜的机械强度。制备的水凝胶膜对大肠杆菌和金黄色葡萄球菌的抑菌率超过98 %,并具有良好的抗氧化和紫外线屏蔽性能。随着卡拉胶的氧化程度增加,水蒸气渗透性水凝胶的电影率从1.34减少 ×10 ⁻¹ ⁰g·m⁻¹ ·s⁻¹ ·Pa⁻¹ 3.13 ×10 ⁻¹ ¹g·m⁻¹ ·s⁻¹ ·Pa⁻¹ ,而氧气渗透速率下降从40.61 毫克当量/公斤到20.04 毫克当量/公斤。这种设计有效地减轻了水果和蔬菜因脱水和氧化而导致的变质。含有中等氧化程度的卡拉胶的水凝胶膜表现出优异的力学性能,拉伸强度提高了4.8倍,能够承受200 g的载荷。香蕉保鲜实验表明,水凝胶膜能有效延缓香蕉的变质。值得注意的是,该薄膜具有良好的生物降解性,在土壤中60天内降解率为90% %,这表明其在开发功能性和环保型食品包装系统方面具有重要潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Packaging and Shelf Life
Food Packaging and Shelf Life Agricultural and Biological Sciences-Food Science
CiteScore
14.00
自引率
8.80%
发文量
214
审稿时长
70 days
期刊介绍: Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信