Review of trends and emerging optimization techniques for battery thermal management – Traditional and bibliometric approach

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Ephraim Bonah Agyekum , Flavio Odoi-Yorke , Sanjar Mirzaliev , Mustafa Abdullah , Farhan Lafta Rashid , Ahmed Kadhim Hussein
{"title":"Review of trends and emerging optimization techniques for battery thermal management – Traditional and bibliometric approach","authors":"Ephraim Bonah Agyekum ,&nbsp;Flavio Odoi-Yorke ,&nbsp;Sanjar Mirzaliev ,&nbsp;Mustafa Abdullah ,&nbsp;Farhan Lafta Rashid ,&nbsp;Ahmed Kadhim Hussein","doi":"10.1016/j.est.2025.116437","DOIUrl":null,"url":null,"abstract":"<div><div>High temperatures can reduce battery life and possibly result in thermal runaway, so controlling the battery pack operation temperature is important for electric vehicle's performance as well as safety. This is accomplished with the help of a battery thermal management system (BTMS). In this study, a detailed review of different strategies that has been used to optimize and enhance different BTMSs has been conducted using a combination of the conventional and bibliometric approaches. Based on the analysis of the literature, it was found that several researchers in recent times have conducted studies that investigated creative design approaches, computational methods, optimal cooling, and structural improvements to improve battery performance, safety, and service life. Among the methods and materials employed in the various studies are genetic algorithms, mini-channels, composite phase change materials, orthogonal testing, nanofluids, and surrogate modeling. The study also discovered that while air-cooled BTMS provides simplicity, safety, and consistency, its use is restricted to low-capacity batteries due to its lower heat capacity. Although it needs a sealing cover to stop leaks, liquid-cooled BTMS was found to be promising. Additionally, liquid metals and nanofluids are also being explored due to their increased heat conductivity. The study also identified the limitations associated with the various cooling mechanisms. Some future research proposals were made including the need to improve thermal performance in real-time energy storage systems by combining artificial intelligence and passive cooling techniques with cutting-edge composite materials and hydrated salts.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"119 ","pages":"Article 116437"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25011508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High temperatures can reduce battery life and possibly result in thermal runaway, so controlling the battery pack operation temperature is important for electric vehicle's performance as well as safety. This is accomplished with the help of a battery thermal management system (BTMS). In this study, a detailed review of different strategies that has been used to optimize and enhance different BTMSs has been conducted using a combination of the conventional and bibliometric approaches. Based on the analysis of the literature, it was found that several researchers in recent times have conducted studies that investigated creative design approaches, computational methods, optimal cooling, and structural improvements to improve battery performance, safety, and service life. Among the methods and materials employed in the various studies are genetic algorithms, mini-channels, composite phase change materials, orthogonal testing, nanofluids, and surrogate modeling. The study also discovered that while air-cooled BTMS provides simplicity, safety, and consistency, its use is restricted to low-capacity batteries due to its lower heat capacity. Although it needs a sealing cover to stop leaks, liquid-cooled BTMS was found to be promising. Additionally, liquid metals and nanofluids are also being explored due to their increased heat conductivity. The study also identified the limitations associated with the various cooling mechanisms. Some future research proposals were made including the need to improve thermal performance in real-time energy storage systems by combining artificial intelligence and passive cooling techniques with cutting-edge composite materials and hydrated salts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信