Shiwei Hu , Tianbai Xiao , Mingshuo Han , Zuoxu Li , Erkan Oterkus , Selda Oterkus , Yonghao Zhang
{"title":"An efficient explicit–implicit adaptive method for peridynamic modeling of quasi-static fracture formation and evolution","authors":"Shiwei Hu , Tianbai Xiao , Mingshuo Han , Zuoxu Li , Erkan Oterkus , Selda Oterkus , Yonghao Zhang","doi":"10.1016/j.engfracmech.2025.111046","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the quasi-static fracture formation and evolution is essential for assessing the mechanical properties and structural load-bearing capacity of materials. Peridynamics (PD) provides an effective computational method to depict fracture mechanics. The explicit adaptive dynamic relaxation (ADR) method and the implicit methods are two mainstream PD approaches to simulate evolution of quasi-static fractures. However, no comprehensive and quantitative studies have been reported to compare their accuracy and efficiency. In this work, we first develop an implicit method for bond-based peridynamics (BBPD) based on the full nonlinear equilibrium equation and the degenerate form of the bond failure function, where the Jacobian matrices are derived using the Newton–Raphson (NR) scheme. Subsequently, we analyze the solvability of the implicit BBPD scheme. Second, a consistent and comprehensive comparison of accuracy and efficiency of the explicit ADR and implicit methods is conducted, which reveals computational efficiency of the implicit methods and their limitations in accurately describing crack formation. Finally, by utilizing the unique advantage of both methods, we develop an adaptive explicit–implicit method and propose a switching criterion to deploy appropriate scheme accordingly. Four typical quasi-static problems are employed as the numerical experiments, which show the acceleration ratios of the current method range from 6.4 to 141.7 when compared to the explicit ADR. Therefore, the explicit–implicit adaptive method provides a powerful method to simulate quasi-static fracture formation and evolution.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"320 ","pages":"Article 111046"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425002474","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the quasi-static fracture formation and evolution is essential for assessing the mechanical properties and structural load-bearing capacity of materials. Peridynamics (PD) provides an effective computational method to depict fracture mechanics. The explicit adaptive dynamic relaxation (ADR) method and the implicit methods are two mainstream PD approaches to simulate evolution of quasi-static fractures. However, no comprehensive and quantitative studies have been reported to compare their accuracy and efficiency. In this work, we first develop an implicit method for bond-based peridynamics (BBPD) based on the full nonlinear equilibrium equation and the degenerate form of the bond failure function, where the Jacobian matrices are derived using the Newton–Raphson (NR) scheme. Subsequently, we analyze the solvability of the implicit BBPD scheme. Second, a consistent and comprehensive comparison of accuracy and efficiency of the explicit ADR and implicit methods is conducted, which reveals computational efficiency of the implicit methods and their limitations in accurately describing crack formation. Finally, by utilizing the unique advantage of both methods, we develop an adaptive explicit–implicit method and propose a switching criterion to deploy appropriate scheme accordingly. Four typical quasi-static problems are employed as the numerical experiments, which show the acceleration ratios of the current method range from 6.4 to 141.7 when compared to the explicit ADR. Therefore, the explicit–implicit adaptive method provides a powerful method to simulate quasi-static fracture formation and evolution.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.