Rehab F. Mohamed , Ahmed A. Afifi , Mohamed Azab El-Liethy , Hossam F. Nassar
{"title":"Nano-engineered magnesium-enriched sugarcane bagasse for dual decontamination of heavy metals and E. coli in sewage water","authors":"Rehab F. Mohamed , Ahmed A. Afifi , Mohamed Azab El-Liethy , Hossam F. Nassar","doi":"10.1016/j.nanoso.2025.101475","DOIUrl":null,"url":null,"abstract":"<div><div>Sugarcane bagasse (SCB) is a fibrous lignocellulosic waste formed when sugarcane is crushed to extract juice for ethanol and sugar manufacture. The study's goal was to look at how chemical alteration affects the properties of SCB combined with Mg and how successful it is at removing three heavy metals including (Copper (Cu<sup>2 +</sup>), Zinc (Zn<sup>2+</sup>), and Lead (Pb<sup>2+</sup>)) as well as <em>Escherichia coli</em> (<em>E. coli</em>) from contaminated wastewater. The chemical and physical characteristics of the biochar generated were investigated at temperatures of 600°C and 800°C using the Brunauer-Emmett-Teller (BET) surface area analyzer, thermo gravimetric analysis (TGA), Fourier transform infrared (FTIR) peak analysis, and energy dispersive X-ray (EDS). A batch sorption test was carried out to determine the ability of sugarcane bagasse biochar (SCBB) to adsorb Cu, Pb, and Zn from solution. The adsorption data were examined using the Langmuir and Freundlich adsorption isotherms. The results indicate that the Langmuir isotherm model produced the best precise match. An accurate estimate for employing SCBB as a biosorbent material was used in sewage and industrial wastewater (contact time one hour, optimal dosage 800 ppm). The SCBB achieves maximum removal rates of 81.4, 83.5, and 89.2 % for biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solids (TSS), respectively. However, nitrate nitrogen (NO<sub>3</sub>-N) reached 52.2 %, while total phosphorus (TP) reached 63.2 %. Pb, Zn, and Cu were completely removed. The minimum inhibitory concentration (MIC) of SCBB against <em>E. coli</em> was 600 mg/mL. <em>E. coli</em> is completely eradicated from wastewater using 800 mg/L of SCBB in one hour. The present study developed potent, cost-effective, ecofriendly and multifunctional adsorbent of MgO-modified SCBB for safely wastewater de-pollution as a promising environmental remediation technology.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"42 ","pages":"Article 101475"},"PeriodicalIF":5.4500,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25000459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Sugarcane bagasse (SCB) is a fibrous lignocellulosic waste formed when sugarcane is crushed to extract juice for ethanol and sugar manufacture. The study's goal was to look at how chemical alteration affects the properties of SCB combined with Mg and how successful it is at removing three heavy metals including (Copper (Cu2 +), Zinc (Zn2+), and Lead (Pb2+)) as well as Escherichia coli (E. coli) from contaminated wastewater. The chemical and physical characteristics of the biochar generated were investigated at temperatures of 600°C and 800°C using the Brunauer-Emmett-Teller (BET) surface area analyzer, thermo gravimetric analysis (TGA), Fourier transform infrared (FTIR) peak analysis, and energy dispersive X-ray (EDS). A batch sorption test was carried out to determine the ability of sugarcane bagasse biochar (SCBB) to adsorb Cu, Pb, and Zn from solution. The adsorption data were examined using the Langmuir and Freundlich adsorption isotherms. The results indicate that the Langmuir isotherm model produced the best precise match. An accurate estimate for employing SCBB as a biosorbent material was used in sewage and industrial wastewater (contact time one hour, optimal dosage 800 ppm). The SCBB achieves maximum removal rates of 81.4, 83.5, and 89.2 % for biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solids (TSS), respectively. However, nitrate nitrogen (NO3-N) reached 52.2 %, while total phosphorus (TP) reached 63.2 %. Pb, Zn, and Cu were completely removed. The minimum inhibitory concentration (MIC) of SCBB against E. coli was 600 mg/mL. E. coli is completely eradicated from wastewater using 800 mg/L of SCBB in one hour. The present study developed potent, cost-effective, ecofriendly and multifunctional adsorbent of MgO-modified SCBB for safely wastewater de-pollution as a promising environmental remediation technology.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .