Reconstructing semi-directed level-1 networks using few quarnets

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Martin Frohn , Niels Holtgrefe , Leo van Iersel , Mark Jones , Steven Kelk
{"title":"Reconstructing semi-directed level-1 networks using few quarnets","authors":"Martin Frohn ,&nbsp;Niels Holtgrefe ,&nbsp;Leo van Iersel ,&nbsp;Mark Jones ,&nbsp;Steven Kelk","doi":"10.1016/j.jcss.2025.103655","DOIUrl":null,"url":null,"abstract":"<div><div>Semi-directed networks are partially directed graphs that model evolution where the directed edges represent reticulate evolutionary events. We present an algorithm that reconstructs binary <em>n</em>-leaf semi-directed level-1 networks in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time from its quarnets (4-leaf subnetworks). Our method assumes we have direct access to all quarnets, yet uses only an asymptotically optimal number of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> quarnets. When the network is assumed to contain no triangles, our method instead relies only on four-cycle quarnets and the splits of the other quarnets. A variant of our algorithm works with quartets rather than quarnets and we show that it reconstructs most of a semi-directed level-1 network from an asymptotically optimal <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> of the quartets it displays. Additionally, we provide an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> time algorithm that reconstructs the tree-of-blobs of any binary <em>n</em>-leaf semi-directed network with unbounded level from <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> splits of its quarnets.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"152 ","pages":"Article 103655"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000376","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-directed networks are partially directed graphs that model evolution where the directed edges represent reticulate evolutionary events. We present an algorithm that reconstructs binary n-leaf semi-directed level-1 networks in O(n2) time from its quarnets (4-leaf subnetworks). Our method assumes we have direct access to all quarnets, yet uses only an asymptotically optimal number of O(nlogn) quarnets. When the network is assumed to contain no triangles, our method instead relies only on four-cycle quarnets and the splits of the other quarnets. A variant of our algorithm works with quartets rather than quarnets and we show that it reconstructs most of a semi-directed level-1 network from an asymptotically optimal O(nlogn) of the quartets it displays. Additionally, we provide an O(n3) time algorithm that reconstructs the tree-of-blobs of any binary n-leaf semi-directed network with unbounded level from O(n3) splits of its quarnets.
利用少四元重构半有向一级网络
半有向网络是模拟进化的部分有向图,其中有向边表示网状进化事件。提出了一种从四叶子网(四叶子网)在O(n2)时间内重构二元n叶半有向level-1网络的算法。我们的方法假设我们可以直接访问所有quarnets,但只使用渐进最优数量的O(nlog (n) quarnets。当假设网络不包含三角形时,我们的方法只依赖于四循环quarnets和其他quarnets的分裂。我们的算法的一个变体适用于四元而不是四元,并且我们表明它从它显示的四元的渐近最优O(nlog ln n)重建了大部分半定向一级网络。此外,我们还提供了一种O(n3)时间算法,该算法从其quarnets的O(n3)个分裂重构任意具有无界水平的二元n叶半有向网络的blobs树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信