Lin Liu , Donghong Xiong , Baojun Zhang , Dan Yang , Yong Yuan , Binyan Zhang , Wenduo Zhang , Liangtao Shi , Xiaodan Wang
{"title":"How does shrub stem coverage affect the hydraulic properties of concentrated flow and sediment yield during gully bed erosion?","authors":"Lin Liu , Donghong Xiong , Baojun Zhang , Dan Yang , Yong Yuan , Binyan Zhang , Wenduo Zhang , Liangtao Shi , Xiaodan Wang","doi":"10.1016/j.iswcr.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Vegetation plays a critical role in influencing runoff processes and soil loss during gully bed erosion. However, it is still unclear how the stem coverage affects gully bed erosion processes by altering the runoff hydraulics and soil sedimentation. A series of in situ scouring experiments were conducted to investigate the influence of shrub stem coverage on the concentrated flow pathway characteristics, hydrodynamic parameters, and sediment concentration during gully bed erosion processes. The Flow pathway characteristics expressed by the Number of flow pathways (FN), total Flow path Width (FW), Tortuosity Ratio (TR), and Fractal Dimension (FD) were quantified by analyzing photographs of the gully bed surface taken during experimental periods. Structural equation model was used to analyze the comprehensive effect of stem coverage on hydraulic erosion of gully beds. The results showed that FN, FW, and TR increased linearly, and FD increased exponentially as stem coverage increased. Compared with the bare gully bed, the flow velocity and shear stress of gully beds with shrub stem covers decreased by 17.47%–25.19% and 4.75%–11.42%, respectively, while the Darcy-Weisbach friction factor increased by 35.94%–68.71%. The sediment concentration of stem-covered gully beds decreased by 11.82%–26.93%. The increasing stem coverage promoted concentrated flow branching and significantly increased FW, which in turn altered hydraulic parameters, particularly reducing flow velocity, and ultimately reducing sediment concentrations indirectly. These results contribute to partially explaining the differences in flow hydraulics and soil loss of vegetated gully beds in previous studies that failed to account for changes in flow pathways.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 2","pages":"Pages 334-347"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633925000036","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vegetation plays a critical role in influencing runoff processes and soil loss during gully bed erosion. However, it is still unclear how the stem coverage affects gully bed erosion processes by altering the runoff hydraulics and soil sedimentation. A series of in situ scouring experiments were conducted to investigate the influence of shrub stem coverage on the concentrated flow pathway characteristics, hydrodynamic parameters, and sediment concentration during gully bed erosion processes. The Flow pathway characteristics expressed by the Number of flow pathways (FN), total Flow path Width (FW), Tortuosity Ratio (TR), and Fractal Dimension (FD) were quantified by analyzing photographs of the gully bed surface taken during experimental periods. Structural equation model was used to analyze the comprehensive effect of stem coverage on hydraulic erosion of gully beds. The results showed that FN, FW, and TR increased linearly, and FD increased exponentially as stem coverage increased. Compared with the bare gully bed, the flow velocity and shear stress of gully beds with shrub stem covers decreased by 17.47%–25.19% and 4.75%–11.42%, respectively, while the Darcy-Weisbach friction factor increased by 35.94%–68.71%. The sediment concentration of stem-covered gully beds decreased by 11.82%–26.93%. The increasing stem coverage promoted concentrated flow branching and significantly increased FW, which in turn altered hydraulic parameters, particularly reducing flow velocity, and ultimately reducing sediment concentrations indirectly. These results contribute to partially explaining the differences in flow hydraulics and soil loss of vegetated gully beds in previous studies that failed to account for changes in flow pathways.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research