The evolution of large gullies in association with long-term rainfall in the Tsitsa River Catchment, Eastern Cape, South Africa

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES
Ryan Leigh Anderson , Jay le Roux , Kate Rowntree
{"title":"The evolution of large gullies in association with long-term rainfall in the Tsitsa River Catchment, Eastern Cape, South Africa","authors":"Ryan Leigh Anderson ,&nbsp;Jay le Roux ,&nbsp;Kate Rowntree","doi":"10.1016/j.iswcr.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Large gullies exist as permanent features in the landscape that impact the surrounding environment and communities. The effect of rainfall on long-term gully evolution is still understudied, especially for large gully systems. The extent of the growth of the gullies of four large gullies in the Eastern Cape Province (South Africa) is explored over a 70-year period (1950–2020) in relation to rainfall. The extent of these gullies was mapped by manually digitizing the gully edges using aerial surveys and SPOT images captured during the study period. Daily rainfall depths were assessed to examine intense rainfall and rainfall erosivity values using the modified Fournier index. The results reveal an exponential trend of the evolution of the gully in which two phases of development of the gully occurred, according to the type of erosion processes that occurred. The first phase (1950–2004) was mainly characterised by the linear lengthening of the gully systems. The second phase (2004–2020) is mainly characterised by the initiation and growth of side branches in the gullies, with greater increases in extent. Both phases recorded highly erosive rainfall. It is postulated that gully expansion accelerated in Phase 2 due to land degradation resulting from increased livestock in the area. This study highlights that intense rainfall, while acting as a driver for gully expansion, is influenced by interconnected factors, including vegetation cover removal and topography. The findings of this study have implications for the results of control measures in large gully systems with dispersive soils.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 2","pages":"Pages 290-300"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633925000103","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Large gullies exist as permanent features in the landscape that impact the surrounding environment and communities. The effect of rainfall on long-term gully evolution is still understudied, especially for large gully systems. The extent of the growth of the gullies of four large gullies in the Eastern Cape Province (South Africa) is explored over a 70-year period (1950–2020) in relation to rainfall. The extent of these gullies was mapped by manually digitizing the gully edges using aerial surveys and SPOT images captured during the study period. Daily rainfall depths were assessed to examine intense rainfall and rainfall erosivity values using the modified Fournier index. The results reveal an exponential trend of the evolution of the gully in which two phases of development of the gully occurred, according to the type of erosion processes that occurred. The first phase (1950–2004) was mainly characterised by the linear lengthening of the gully systems. The second phase (2004–2020) is mainly characterised by the initiation and growth of side branches in the gullies, with greater increases in extent. Both phases recorded highly erosive rainfall. It is postulated that gully expansion accelerated in Phase 2 due to land degradation resulting from increased livestock in the area. This study highlights that intense rainfall, while acting as a driver for gully expansion, is influenced by interconnected factors, including vegetation cover removal and topography. The findings of this study have implications for the results of control measures in large gully systems with dispersive soils.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信