Flexural behavior and durability of reinforced concrete beams with seawater, sulfate-resistant cement, and glass fiber-reinforced polymer reinforcement

IF 5.6 1区 工程技术 Q1 ENGINEERING, CIVIL
Abdelrahman Abushanab , Usama Ebead , Magdy Genedy , Nehal M. Ayash , Sami Akil Fawzy
{"title":"Flexural behavior and durability of reinforced concrete beams with seawater, sulfate-resistant cement, and glass fiber-reinforced polymer reinforcement","authors":"Abdelrahman Abushanab ,&nbsp;Usama Ebead ,&nbsp;Magdy Genedy ,&nbsp;Nehal M. Ayash ,&nbsp;Sami Akil Fawzy","doi":"10.1016/j.engstruct.2025.120204","DOIUrl":null,"url":null,"abstract":"<div><div>Seawater has recently been proposed for concrete manufacturing as a sustainable alternative to fresh water. However, seawater degrades the concrete properties at later ages. Accordingly, this study experimentally and analytically investigated the flexural behavior and durability of 9 concrete beams reinforced with glass fiber-reinforced polymer (GFRP) reinforcement and made with 3 seawater replacement ratios (0 %, 50 %, and 100 %), 2 types of cement (ordinary Portlandite and sulfate-resistant cement), and 2 types of curing water (fresh water and seawater). The beams were prepared with dimensions of 200 × 500 × 2200 mm and tested after exposure to seawater for 6 months. The results demonstrated that incorporating seawater and sulfate-resistant cement simultaneously improved the 28-day mechanical properties of concrete by about 16 % compared to those made entirely with fresh water. Likewise, beams made with 100 % seawater and sulfate-resistant cement recorded an improvement of 23 % in the load-carrying capacity and 80 % in the energy absorption compared to beams with fresh water. In addition, the beams made with seawater and sulfate-resistant cement showed no difference in the failure mode and flexural properties after conditioning in seawater for 180 days as compared to the reference beam. Analytically, ACI 440.11–22 achieved the best moment capacity prediction of the tested beams with an average, standard deviation, and coefficient of variance of experimental-to-predicted moment ratios of 1.26, 0.11, and 8.75 %, respectively.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"333 ","pages":"Article 120204"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625005954","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater has recently been proposed for concrete manufacturing as a sustainable alternative to fresh water. However, seawater degrades the concrete properties at later ages. Accordingly, this study experimentally and analytically investigated the flexural behavior and durability of 9 concrete beams reinforced with glass fiber-reinforced polymer (GFRP) reinforcement and made with 3 seawater replacement ratios (0 %, 50 %, and 100 %), 2 types of cement (ordinary Portlandite and sulfate-resistant cement), and 2 types of curing water (fresh water and seawater). The beams were prepared with dimensions of 200 × 500 × 2200 mm and tested after exposure to seawater for 6 months. The results demonstrated that incorporating seawater and sulfate-resistant cement simultaneously improved the 28-day mechanical properties of concrete by about 16 % compared to those made entirely with fresh water. Likewise, beams made with 100 % seawater and sulfate-resistant cement recorded an improvement of 23 % in the load-carrying capacity and 80 % in the energy absorption compared to beams with fresh water. In addition, the beams made with seawater and sulfate-resistant cement showed no difference in the failure mode and flexural properties after conditioning in seawater for 180 days as compared to the reference beam. Analytically, ACI 440.11–22 achieved the best moment capacity prediction of the tested beams with an average, standard deviation, and coefficient of variance of experimental-to-predicted moment ratios of 1.26, 0.11, and 8.75 %, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Structures
Engineering Structures 工程技术-工程:土木
CiteScore
10.20
自引率
14.50%
发文量
1385
审稿时长
67 days
期刊介绍: Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed. The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering. Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels. Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信